
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 
films the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order.

University Microfilms International  
A Bell & Howell  Information C o m p a n y  

3 0 0  North Z e e b  R oad .  Ann Arbor, Ml 4 8 1 0 6 - 1 3 4 6  USA  
3 1 3 / 7 6 1 - 4 7 0 0  8 0 0 / 5 2 1 - 0 6 0 0



www.manaraa.com



www.manaraa.com

Order N um ber 9200081

Three essays on sam pling techniques: Sm all sam ple  
perform ances o f estim ators and predictors

Chantanahom, Parisun, Ph.D.
The Louisiana State University and Agricultural and Mechanical Col., 1991

UMI
300 N. Zeeb Rd.
Ann Arbor, MI 48106



www.manaraa.com



www.manaraa.com

Three Essays on Sampling Techniques:
Small Sample Performances of Estimators and Predictors

A Dissertation

Submitted to the Graduate Faculty of the 
Louisiana State University and 

Agricultural and Mechanical College 
in partial fulfillment of the 
requirements for the degree of 

Doctor of Philosophy

in

The Department of Economics

by
Parisun Chantanahom 

B.A, Thammasat University, 1984 
M.S., Louisiana State University, 1989

May 1991



www.manaraa.com

ACKNOWLEDGEMENT
This researcli is accomplished through the help and 

advise of many persons. First and foremost, I would like to 

thank Professor R. Carter Hill, my advisor, for his guidance 

and kindness. I thank Professor W.D. McMillin for his 
encouragement and useful comments. Professor Hector Zapata 

and Professor Faik Koray have also provided many valuable 

remarks. I thank the dissertation committee members for 
their advise. I thank Melissa Waters for her clear 
explanation of the model used in the first topic. Ms. 

Samanporn Samitsombut/s help with the organization of the 

work is affectioriately appreciated. I am grateful for the 
assistantship granted to me by the Department of Economics 

for the first four years of my study.
I have never dreamt of going to graduate school and 

receive a doctorate degree. This accomplishment is the 

result of the devotion of all of my teachers in Thailand 

whom I am forever in debt. One regret is that none of my 

grandparents whom I dearly love live to share this moment 
,especially grandpa Term Chantanahom who raised me during my 

early childhood. Lastly, my love and wholeheartedly 

gratification go to my parents for their affection and 

devotion. So here goes "This one for you mom, dad".

ii



www.manaraa.com

TABLE OF CONTENTS 
PRELIMINARIES PAGE

Acknowledgment ..................................   ii

Table of Contents .................................  iii
List of Tables ............   vii

List of Figures ........    xii

Abstract ...........................................  xvi

CHAPTER
1. INTRODUCTION

1.1 Organization of the S t u d y ....................... 1
1.2 Simultaneous Equations Generalized

Probit Model   ..................................  1
1.3 Equity Estimator.................................  3

1.4 A Confidence Interval for Out-Of-Sample
Prediction when using Biased Predictors ......  4

2. ON THE ESTIMATION OF A SIMULTANEOUS EQUATIONS 
GENERALIZED PROBIT MODEL

2.1 Introduction ...................................  5

2.2 The Model ........................................  6
2.3 Heckman's Model

2.3.1 First Structural Equation ...............  9

2.3.2 The Cov(W*) ............................. 12
2.3.3 The Second Structural Equation .........  18
2.3.4 The Estimation of I!  .................. 19

2.3.5 The Parameters of Interest .............. 22

2.4 Alternatives Estimators.
2.4.1 GLS of Transformed Model ...............  23

iii



www.manaraa.com

2.4.2 Instrumental Variables/OLS ............  25
2.4.3 Instrumental Variables/GLS .....    27
2.4.4 Restricted Least Squares ..............  27

3. THE MONTE CARLO EXPERIMENT OF THE SIMULTANEOUS 
EQUATIONS GENERALIZED PROBIT MODEL

3.1 Introduction .................................... 31
3.2 The Model .......................................  32
3.3 Monte Carlo Experiment

3.3.1 Monte Carlo Samples ....................  41
3.3.2 Monte Carlo Experiment Results .....   45

3.3.3 The Characteristics of
the Monte Carlo Samples U s e d ........... 59

3.3.4 The Asymptotic Standard errors ........  62

3.3.5 An Alternative Estimation
Technique of the Covariance Matrix ....  73

3.4 Conclusions ....................................   85

4. EQUITY ESTIMATOR
4.1 Introduction .................................... 87

4.2 Multicollinearity and its Effects on
Ordinary Least Squares .........................  88

4.3 Biased Estimation .............................  90
4.4 Ridge Regression Estimator ..................... 93
4.5 Stein-like Principal Components

Estimator .........    96
4.6 The Equity Estimator..........................  102

5. THE SMALL SAMPLE PERFORMANCE OF THE EQUITY ESTIMATOR 
AND ITS ALTERNATIVES

5.1 Introduction ..................................  113

iv



www.manaraa.com

5.2 Price Promotion Model
5.2.1 Price Promotion Model  ............ 113
5.2.2 Collinearity Diagnostics ..............  115

5.3 The Equity Estimator and Its Alternatives
5.3.1 Equity Estimator  ...................   115
5.3.2 The Alternatives  ....................  119

5.4 Monte Carlo Experiments
5.4.1 Parameters Estimation  ..........    123

5.4.2 The Nature of Monte Carlo
Experiments ............................  126

5.4.3 Monte Carlo Experiments Results .......  129

5.5 Conclusions .................................... 163

6. A CONFIDENCE INTERVAL FOR OUT-OF-SAMPLE PREDICTION 
WHEN USING BIASED PREDICTORS

6.1 Introduction ..................................  167
6.2 The Effects of Multicollinearity on

Out-of-sample Prediction ....................  168
6.3 Biased Estimators and Predictors .............  172

6.4 Bootstrap
6.4.1 Bootstrap Method ....................... 177
6.4.2 Confidence Intervals for Forecasts .... 181

7. THE BOOTSTRAP CONFIDENCE INTERVALS FOR OUT-OF-SAMPLE 
PREDICTION IN THE PRESENCE OF MULTICOLLINEARITY USING 
BIASED PREDICTORS

7.1 Introduction  ................   183
7.2 Data Description ..............................  184
7.3 Bootstrap Confidence Intervals

7.3.1 The Confidence Interval ...............  188

v



www.manaraa.com

7.3.2 Bootstrap Sampling Results .............  191
7.4 Conclusions .....................................  214

REFERENCES ..............................................  216

VITA .....................................................  224

vi



www.manaraa.com

LIST OF TABLES

TABLE PAGE
3.1 The coefficient estimates of the selected

estimation process ..............................  3 6

3.2 The coefficient estimates of the selected
estimation process (with iterations) .....    38

3.3 Average values of the parameter estimates
obtained through Monte Carlo experiments ......  4 9

3.4 Bias, standard errors and mean square errors
of the parameter estimates obtained through
Monte Carlo experiments  ......    51

3.5 The description of the distribution of the
estimates of the parameter y ..................  55

3.6 The description of the distribution of the
estimates of the parameter ..................  56

3.7 The description of the distribution of the
estimates of the parameter y2 .......    57

3.8 The description of the distribution of the
estimates of the parameter S2 ..................  58

3.9 The description of the distribution of the
estimates of the parameter cri2..................  60

3.10 The description of the distribution of the
estimates of the parameter ..................  61

3.11 The calculated actual asymptotic
standard errors .................................  70

3.12 The standard errors of the parameter 
estimates and the estimates of the components
of the covariance matrix ......................  76

vii



www.manaraa.com

3.13 The descriptive statistics of the estimates of
cr and cr2 obtained from the Monte Carlo 12 1
experiments of the traditional and derived 
reduced form parameter approach ...............  78

3.14 Bias, standard errors and mean square errors
of the parameter estimates obtained through 
Monte Carlo experiments ........................ 80

3.15 The coefficient estimates of the selected
estimation process .................    82

5.1 The condition numbers for the transformed and
untransformed data ................   116

5.2 The estimated parameter values of the equity
estimator and its alternatives  ...............  125

5.3 The average mean square errors of the equity
estimator and its alternatives associated with 
various vector lengths ........................  13 0

5.4 The average prediction mean square errors
of the equity estimator and its alternatives 
associated with various vector lenght ......... 131

5.5 The average mean square errors of the
estimates of of the equity estimator
and its alternatives associated with various 
vector lengths .................................  134

5.6 The average bias of the estimates of c<2 of the
equity estimator and its alternatives associated 
with various vector lengths ...................  135

5.7 The estimated parameter values of the
equity estimator applied to various types of 
conditioned data ...............................  137

5.8 The average mean square errors of the
equity estimator applied to various types of 
conditioned data ...............................  138

5.9 The average prediction mean square errors of the
equity estimator applied to various types of 
conditioned data................................  141

viii



www.manaraa.com

5.10 The average mean square errors of the 
estimates of <*2 of the equity estimator applied
to various types of conditioned data   14 3

5.11 The bias of the estimates of «2 of the equity
estimator applied to various types of 
conditioned data ...............................  144

5.12 The estimated parameter values of the ridge 
regression estimator applied to various types
of conditioned data ............................  147

5.13 The average mean square errors of the ridge 
regression estimator applied to various types
of conditioned data ............................  148

5.14 The average prediction mean square errors of the 
ridge regression estimator applied to various 
types of conditioned data ...................... 149

5.15 The average mean square errors of the 
estimates of a2 of the ridge regression
regression applied to various types of 
conditioned data ...................    150

5.16 The bias of the estimates of a2 of the ridge
regression estimator applied to various types 
of conditioned data ............................  151

5.17 The estimated parameter values of the Stein 
estimator applied to various types of 
conditioned data ...............................  153

5.18 The average mean square errors of the Stein 
estimator applied to various types of 
conditioned data ...............................  154

5.19 The average prediction mean square errors
of the Stein estimator applied to various types 
of conditioned data .................   155

5.20 The average mean square errors of the estimates 
of a2 of the Stein estimator applied to
various types of conditioned data .............  156

ix



www.manaraa.com

5.21 The bias of the estimates of of the Stein
estimator applied to various types of 
conditioned data .............   157

5.22 The estimated parameter values of the PC-Stein 
estimator applied to various types of 
conditioned data ..........        158

5.23 The average mean square errors of the PC-Stein 
estimator applied to various types of 
conditioned data ...............................  159

5.24 The average prediction mean square errors of the 
PC-Stein estimator applied to various types of 
conditioned data .................    160

5.2 5 The average mean square errors of the estimates
of a2 of the PC-Stein estimator applied to
various types of conditioned data .............. 161

5.2 6 The bias of the estimates of az of the
PC-Stein estimator applied to various types 
of conditioned data ............................  162

7.1 The condition numbers for the untransformed
and transformed data ......................... 186

7.2 The estimated parameter values of the
equity estimator and its alternatives .........  192

7.3 The out-of-sample exogenous variables .........  194

7.4 The l n ^ )  forecasts of week 49 obtained from
the predictors .................................  195

7.5 The lnCs^ forecasts of week 50 obtained from
the predictors ........    197

7.6 The ln(s^) forecasts of week 51 obtained from
the predictors .................................  198

7.7 The ln(si) forecasts of week 52 obtained from
the predictors .................................  199

x



www.manaraa.com

7.8a

7.8b

7.9

7.10

7.11

7.12

7.13

7.14

The calculated true confidence intervals of the 
least squares predictors ....................... 202

The percentage of time that the bootstrap 
confidence intervals contain the actual forecast 
values ..........................................  202
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ABSTRACT
The dissertation addresses the issues of small sample 

properties of estimators and predictors. Economic analysis 
usually relies on the asymptotic properties of estimators 
and predictors which may not be the same as their asymptotic 
counterparts. Furthermore, some biased estimators and 

predictors used in economic studies have certain asymptotic 

properties which are not fully understood. Consequently, 

sampling techniques are used to explore the small sample 
properties and construct confidence intervals for predictors 

and estimators. In the dissertation, first, Monte Carlo 
experiments are used to find an appropriate estimation 

procedure for a system of simultaneous equations which 
involves a latent endogenous variable. Second, Monte Carlo 
experiments are used to explore the small sample property of 

the 'equity estimator' and compare it to the small sample 

properties of the 'traditional' estimators. Third, bootstrap 

sampling techniques is utilized to construct confidence 
intervals for the out-of-sample forecasts obtained via 

biased predictors which cannot be constructed in the usual 
way.

The findings are 1) an instrumental variables approach 

is an appropriate alternative estimation technique of the 
system of simultaneous equation involving a latent 

endogenous variable 2) the small sample of the equity

xv i
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estimator is dependent on the vector lengths and the 
conditioning of the data and 3) bootstrap method produces 
reasonable confidence intervals for out-of-sample forecasts.

xvii
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CHAPTER 1 
INTRODUCTION

1.1 ORGANIZATION OF THE STUDY
In this study, we use sampling techniques to study the 

small sample properties of predictors and estimators when 

their small sample properties are not known. The asymptotic 

properties are sometimes used in the place of the small 
sample properties but they may not be the same.

Consequently, sampling techniques are used to find and 
compare the small sample properties of estimators and 

predictors.
We are going to use Monte Carlo experiments and 

bootstrap sampling processes to help us choose an
appropriate technique for estimating a particular type of 
simultaneous equations model. We will also use Monte Carlo 
experiments to evaluate the small sample performances of the 

alternative estimators. Lastly, we are going to engage in 

bootstrap sampling techniques to construct reasonable 
confidence intervals for out-of-sample forecasts obtained 

through a group of predictors.

1.2 SIMULTANEOUS EQUATIONS GENERALIZED PROBIT MODEL
The first section of the study concerns the estimation 

of simultaneous equations generalized probit model. 

Traditionally, the method of choice is that of Heckman
(1978). Amemiya (1978) suggested certain estimation 

alternatives. Moreover, the model itself also suggests a
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restriction on the: parameter space. The performance of the 
alternatives relative to those of Heckman are unknown. In 
Chapter 2, we will develop Heckman's estimation method and 
its alternatives algebraically . In Chapter 3, we will use 

Monte Carlo experiments to study the small sample 
performance of each of the estimation procedures.

The first alternative is a generalized least squares 

approach to Heckman's estimation procedure. The second 
alternative is the instrumental variables approach. The third 

alternative is again the instrumental variables approach 

except that we make use of the estimated covariance matrix 

in the estimation process. The fourth alternative is 
a restricted least, squares type estimator.

In Chapter 3, we are going to use a bargaining law 
determination model which is to be estimated by each of the 
alternatives. The model is in a simultaneous equations 

context. The first equation describes the determination of 

bargaining coverage as a proportion of employees. The second 

equation describes the determination of the unobservable 

sentiments toward enacting bargaining legislation . We will 

use Monte Carlo experiments to evaluate and compare each of 

the estimation alternatives via mean square error criteria. 
We will also examine the appropriateness of using the 

asymptotic covariance as the sample covariance for each of 

the estimation methods.
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1.3 EQUITY ESTIMATOR
The second topic concerns the small sample performance 

of an estimator introduced in Krishnamurati and Rangaswamy 
(KR) (1987), called the 'equity estimator'. KR suggested 
that the equity estimator is to be used when 

multicollinearity is present. They claimed that the equity 

estimator deals with the problem of multicollinearity by 

treating each control variable in an equitable manner.
The properties of the equity estimator are not fully 

understood. KR (1987) used Monte Carlo experiments to show 
that under certain circumstances, the equity estimator had 
smaller mean squcare error than that of least squares and 

ridge regression.
In Chapter 4, we discuss the effects of 

multicollinearity on least squares. Then we introduce the 
use of traditional biased estimators, ridge regression and 

Stein-like estimators, when multicollinearity is present. We 

will describe the derivation and properties for each of the 

traditional biased estimators. Then we will discuss the 
derivation of the equity estimator and examine its 

characteristics.
In Chapter 5, we use actual marketing data to study the 

small sample performances of the equity estimator and 

compare them to those of least squares and the traditional 

biased estimator via Monte Carlo experiment.
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1.4 A CONFIDENCE INTERVAL FOR OUT-OF-SAMPLE PREDICTION WHEN 
USING BIASED PREDICTORS.

Topic three concerns the establishing of confidence 

intervals for out-of-sample prediction when biased 
estimators are used as predictors. The confidence intervals 

of biased predictors forecast values cannot be obtained in 

the usual manner. Consequently, we use the bootstrap method 

to construct reasonable confidence intervals.
In Chapter 6, we discuss the effects of 

multicollinearity on least squares predictors. We will 
examine the use of biased predictors and their properties. 

Then we will introduce the bootstrap re-sampling method and 
its application on estimating confidence intervals for 

out-of-sample forecasts.
In Chapter 7, we apply the traditional biased 

estimators discussed in Chapter 4 to an actual set of data 
and use the resulting estimates to make out-of-sample 

predictions. Afterwards, we use the bootstrap method to 

construct reasonable confidence intervals for the forecast 

values.



www.manaraa.com

CHAPTER 2
ON THE ESTIMATION OF A SIMULTANEOUS EQUATIONS 

GENERALIZED PROBIT MODEL

2.1 INTRODUCTION
Amemiya (197 8) describes Heckman's approach to the 

problem of estimating simultaneous equations when there is a 
latent endogenous variable that is observed through an 

observable dichotomous endogenous variable.
The disturbance terms of the estimable structural 

equations are correlated with the dichotomous endogenous 

variable. Heckman suggests a two stage estimation
procedure. In the first stage the dichotomous variable is 
replaced with a continuous proxy and least squares is 

applied in the second stage.
In this study, we develop alternatives to Heckman's 

estimation procedure and evaluate the small sample 

properties of each of the estimation techniques. The first 

alternative is to use a generalized least squares approach 
as suggested by Amemiya (1978). A second alternative is the 

instrumental variables approach. The third alternative is 

again the instrumental variables approach to the problem 

except that we make use of the estimated covariance matrix 

in the estimation process.
The fourth alternative that we will consider is a 

restricted least squares type estimator. We will see later 

that, based on a consistency condition, the single equation

5
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estimation of the structural parameters yields two estimates 
of a key parameter which will not have the same value. 
Therefore, it is reasonable that we should estimate this 
parameter on the condition that its two estimates are the 
same. The restricted least squares estimator are used 

when we impose this constraint.
Our other concern is the performance of the covariance 

matrix estimators of each of the alternative structural 
estimators. The asymptotic covariance matrices of the 
various estimators that we have discussed can be obtained 

analytically. However, with a limited number of observations 
(limited in the sense that it is finite), the small sample 

variability of the estimation rules may not be the same as 

their estimated and theoretical counterparts, or the true 

asymptotic covariance. We will use a Monte-Carlo experiment 
to compare the small sample performances of the alternative 

estimation rules.

2.2 THE MODEL
The simultaneous equations that we explore are

y = -yy* + X/3 + S d  + u (2. la)
M  1 - 2  l-l l- -l

~ V j  + + S2A + ^2 <2-lb)

where y is a Txl vector containing observations on an 
observable dependent variable, Xj is a Txl^ matrix of

explanatory variables, Xg is a TxK2 matrix of explanatory
variables , £ and f?2 are vectors of parameters with Ki and
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K2 rows respectively, y* is a Txl vector of values on an 
unobservable endogenous variable. Vectors ui and û  are 
disturbance terms with independent and identical bivariate 

normal distributions.
The dummy variable d is defined as

d =t

*1 y > 0i2t

0 elsewhere

Thus d is the observable counterpart to the
unobservable variable y . We obtain the reduced form-2
equation for y by substituting y 2 into Equation (2.1a),

y = if y + x / 3  + 5 d + u  t + x f i + s d  + u -1 1(2-1 2-2 2- -2 J 1-1 1- -1

“ x,?. + W l  + 2

= XU + S d + V . (2.2)1 1- -1 '
Heckman (1978) has proved that for the model to be logically 

consistent §2=
Similarly substituting y into Equation (2.1b) yields 

the reduced form equation for y ,
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= XIT2 + y2 (2.3)

where v = u +* u and v„ = u +? u -1 1 1 - 2  -2 -2 2-1

Assuming that the joint density function of v2t and dt, 

denoted as 9(v2t#^t) i-s a Proper density function , i.e.

I f  9<v2t,dt)-n i
dv = 1_  . _ _ _ 2td =0,1 t -oo

By definition of dt, the probability that Y2t>0 given dt= 1 

is one,

i.e. Pr[v > -x' II -x' II —IT | = 1(_ 2t It 21 2t 22 23j

Pr|v >1 I = 1
L 2t

Therefore,

{"g!v2t,l)dv2t = Ft (2.4a)
t

and

J = 0 . (2.4b)
—  CO

Similarly, the probability that y £ 0 given dt= 0 is one.

Pr[v2t* -x;tn2r x2tII22] = 1

Pr[V2tS " j  = 1

Consequently,
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t (2.4c)

(2.4d)
t

For the joint density function of v , dfc to be proper, 
the sum of the left hand side terms of Equations
(2. 4a) - (2. 4d) must be equal to the sum of the right hand 
side terms which equals to 1. This will be the case only

when II = 0 or y 6 +5 = 0 or when the model is logically23 2 1 2 -3 1

consistent. The probit model estimates the changes in the 

probability of the event d = 1 with respect to the variables 
on the right hand side of Equation (2.3). Consequently, the 

probability that d = 1 cannot be a determinant of the event 
itself.

Let cr̂ represent Var(vt) ,cr̂ represent Var(v2) and
represent Cov(v ,v ) . We can normalize by letting

since y* is a dichotomous variable and thus we can identify 2
II2 only up to a scalar multiple .

Equation (2.2) can be estimated by the ordinary least 

squares estimator. Equation (2.3) can be estimated by the

Substituting y z in Equation (2.3) into Equation (2.1a) 
and solving for the structural parameters, we get

probit method using d in replacement of y .

2.3 HECKMAN* S MODEL
2.3.1 FIRST STRUCTURAL EQUATION.

*
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V « y | xit + vl + X fi, + 5 d + u■il "l|_ 2 -2J 1-1 1- -1

= r x n 2+ xji)8i + 6 a -yx(Ti2- i y  + 2

= x (n2, j i} e.

XH + S F + S (d+F-F-F) + wt

= (XH, F) P. - (F-F)5i - (F-d) + wx

• *Z (3 + w i-i - i (2.5)

where

XJ = X ,1 1'
F = F(xn ) and F = F(XTI ),

2 2
F is the CDF of a standard normal distribution 

function,

-»,X<V ’V + V r>Y2= Y, -r,x(nz-n2)
and w* = w - (F-F)5i-6i(F-d).

Note that [ Y, Y2] = '[ Y2]r"

where
-1 y.

*i - 1

-l

1-yiya
- i  -y .

“yi - 1

Consequently,
v - i , 1 k  + j .yJ1- » tr2 L J

(2.6a)
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V  -  1 u +y u-2 q-------  -2 2-11-y y L J1 2
(2.6b)

Solve (2.6a) for and substitute into (2.6b) , we will

get v = u +y v . Similarly, if we solve (2.6b) for u and 
—  1 “ 1 1 —  2

substitute it into (2.6a) , we will get y2= *2̂ i+^2*
Let Cov(u ) = <p then,

cov(v.t) = z = (-r1)'* (-r‘)

+ (1 + r , ̂  ̂ 12+ » 1 ♦

y202+2r ip +<p22 1 2 12 2

(2.6c)

Since v = y v + uit 1 2t it

v v  = y v + U VIt 2t 1 2t It 2t

a - E[v v ] = y a + E[u v 112 L It 2t 1 2  It 2t

E [U V  ] = EL It 2tJ U It

y u + u2 11 2t

Therefore,

We know that

^2*1 + *12 
1_Tlr2

y 0 + <p2 , ®2M 12O' = jr (T + --;-------12 1 2 1̂ 2

v = y v + uIt 1 2t It
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W  1 /

1 2v + u - -2t It
V

,2 f <p 2 1 1 2
.2,2y 0 + 2y <p +<p 

' 2 1 2 12 2 7

V2t

(cr /cr ) v + e' 12 2 2t. t (2.6d)

where e is normally distributed and independent of vt

E[e v ] = E1 t 2tJ 2t
TT <(> + <p2 1 M 2U - ------------It 2,2 + 2* 0 +02 2t 2 1 2 12 2

= 0

The relationship in Equation (2.6d) is used in
calculation of the covariance matrix.

Equation (2.5) can be estimated by ordinary 

squares,
(3*= (Z'Z )"x -Z'y . (-1 ' 1 l' 1*1

A * .The asymptotic covariance of 1 3 is

2.3.2 THE CovfWj)

Cov(w*) = E-|wi w*' |

=e | w +(d-F)5i-(F-F)5i| • j'

= e [w w ;J + e [ (d-F)5i5;(d-F)'j + E ĵ (F-F) 6^' (F-F) 'J 

+E[w8;(d-F)'] + E ^ d - D w ; ]

-e [w s ;(f -f )' -e [(f -f ) 5 w ; ]

the

least

2.7)

2 .8)
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where

E[«,»;] - e[ <V »,Y2> - r2X(V n2)].[ • ]'

- = [ v ;  - W V V ' * '  -»,x(n2-n2)v;

+r=x(fi2-n2) <n2-n2)'x]

= e^y;] -?1cov(vl# (n2-n2)')x'-raxcov((n2-n2) ,Yp

+y;'X(Var(II2))X' . (2 .10)

We will now evaluate each of these terms. We assume 

that (vti'vt2  ̂ are indePendentlY and identically distributed
with zero mean and covariance

2cr 1 2

12

Estimation of the probit model (2.3) via maximum
A

likelihood yields the asymptotic covariance matrix of n as 

the inverse of the information matrix,

Cov(H2) = -E 32ln£
an an > - 2  2

The log likelihood function of the probit model is
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and 91n i
an

= t (XtTT2) - (l-dt) f ̂Xtn2̂
tr:1 F(x'n ) i-F(x'n )' t 2' t 2

t -1 L J

Let F be the CDF of standard normal N(0,1)

distribution evaluated at x'n and f = F' andt 2 t t

a2ln i T- = -Y f 
an an' t=i 12 2

Then,

y • f + (x'n )F +■'t t ' t 2' t

(1-y ) - f -(x'n )(1-F )' Jt' t t 2 t'
d - F t)

x' Xt t

CovOIJ = f  \ f t 1 x'X
t = il (1-F ) F ' 1 *-' t' t

-1

Let

Then,

diag (i-F ) Fv t' t

Cov(fl ) = (X'AX*1) = -H_1 (2 .12)

Since n2 is obtained by maximizing the likelihood 
function in (2.11), using a first order Taylor's series

A
expansion of n2 around n2 gives

ain£ ain£ a2ln£
-I-

an 2 n an2 2 n an an'2 2 2 n

Because n maximizes ln£, we know that 2 '
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dln£

an
= o

n

Thus,

( W  = - a 2 ln£
an an2 2'

31n£
an

Under regularity conditions (see Dhrymes 1974),

i . 1 a Ini
ptes • t an an' 2 2

-E -h T
a 2lnl
an an'2 2 J

As a consequence, (H2-n ) has the same asymptotic

distribution as -E 

Consequently,

a 2 ln£
an an'2 2-

ainl
an

cov((n2-n2),v') y;]

= (XAX)_1-Er J X' V Ft f v;l
* F (1-F ) t_1-lt' t7

= (XAX) -1 f x E
t = l

d -Ft t
F (1-F )tv t7

cr v '  
-  12-2

' - i f "=(XAX) ) f x EJLd t tt=l

d v't- 2
F (1-F )t' t7

note that,

[dtva] = E [v2tlv2t>0] -pr[v2t>0]

= f Ft = f 
Fl lt

Thus, cov((n2-n2) ,Y;) = o- ^ x a x )-^
T -2 

-ir f X
t = i F t(l-Ft) 1

= <r (XAX)_1XA (2.13)
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We have

Cov (w ) = cr2I -y O' AX (XAX) -1X-2r <x X(XAX) " 1XA +*2X (XAX) '1 x!1 1 7 1 1 2  112 1
(2.14)

E £(d-F) 52(d-F)' j has its (t*s) element described as

S2

= S2D2 (2.15)

r ( 0 ; t*s
2E (d -F ) (d -F ) = \ „
1 I t 1 s s J | g2F^(1_F^  . t=£

Therefore,

E[s2(d-F) (d-F)' 

where D2= diag(F( (1-Ft))

e[w5i(f-f)-] = E{[y1->r1x(VII2)] [5l(*'~F)']}
= E^S^F-F)'] - E ^ ^ X ^ - i y  (F-F)'j. 

Using the first term of Taylor's series expansion

F a F + f x' (II -n ) .t t t t v 2 2'
Thus,

e JyjS ^ f-f )'] = 51E[Y1( V n2)]xD1= cri26iAX(XAX)“1XDi

where = diag (f().

Consequently,

e [̂w iS1(F-F)'J = CT1261AX(XAX)'1XD1 + 2f15jX (XAX) ~ 1XD^
(2.16)

E [w4i(d-F)'] = E { [ Y r W V n2>][v?-F>']}
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E [ V j X f l U i y  (d-F)'] = E[yiSi

= r ^ X A X ) " 1̂

E^S^d-F)'] = o-i25iDi - y ^ X f X A X ) " ^  . (2.17)

Using Taylor's series approximation

E[(d-F)S^(F-F)'] = E^(d-F) (n2-n2)XDj

= S^D X(XAX)_1XD .(2.18)

Thus, Cov(w*) = cr2I + (y I +5 D )X(XAX)_1X(y 1+5 D ) + S2D„' ' l7 IT ' 1 T i l 7 ' 7 ' 1 T i l 7 12

-O' (y I +5 D )X(XAX)_1XA12' 1 T i l 7 ' 7

- o ^ A X f X A X r W f r ^ + S ^ )  + 251<ri2Dx 

-6i(yiIT+5iDi)X(XAX)“1XDi

^ ^ ( X A X J ^ X U jI ^ jDj) • (2.19)

X(XAX)_1y  T f X dt~F t 1 (d-F) 7 
t = iL F (1-F )J
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2.3.3 THE SECOND STRUCTURAL EQUATION
Repeating the procedure in Section 2.3.1, that is 

substituting y* in Equation (2.3) into Equation (2.1b) and

solving for y yields,

XIT+v = y y + x / 3 + 5 d + u  2 -2 2-1 2-2  2 -  -2

is y = xrr - x ̂  -6 d -x(n - n ) + v„ -u2-1 2 2-2 2 -  ' 2 2 ' -2 -2

Yi XIT2 * X2§2- *2* -X (n2" V  +
*2 *2 *2 *2 *2

= x (na,-j2)
i/r2

+ 5 d + w 1 -  -2

= XQ + 8 F + 6 (d+F-F-F) + W  1 1 V 7 -2

= (XQ, F)
v * 2
*2>Y +  W

where

XJ = X ,2 2 '

* *Z 0 + w2-2 -2

w = -i x(n -n ) + i(v -u ) = v - i x ( n - n )-2 ' 2 2' -'-2 -27 -IT 2 2'

(2 .20)

and w = w -(F-F)S -6 (F-d) . -2 -2 ' 1 i v -7
Note that 5 = -y 5 has been used, and that /3 contains 52 2 1 ' -2 1

and not 5 .2
From the above expression for w2, we can see that

Cov(w2) is the same as Cov(wi) except for the term 
(y I +6 D ) is replaced by (y~lI +6 D ) .IT 11' 2 T 11'
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Equation (2.20) can be estimated by ordinary least 

squares, that is

0* = (Z'Z )_1-Z'y (2.21)
-2 ' 2 2 ' 2 - 1  v '

A *The asymptotic covariance matrix of 02 is

Cov(£) = {(Z^r'z'l-covlwp-jtz^r'z-}' . (2.22)

2.3.4 THE ESTIMATION OF Z.
The next stage is to find a consistent estimator for 

cri2 and cr̂ . The technique that we are going to use is that 

of Heckman (1978) . The estimates for an<̂  can 136
derived from Equation (2.7) and (2.21). 52 is derived from 
Equation (2.21) by using the relationship that S2=
Consider Equation (2.2)

y = XII + 5 d + v *1 2 1- -1

E £yJIX, dj = xn2 + 8 a +E^Y1lX,dj

2since, v = cr v + e where e ~ N(0,cr ) and is independent' It 12 2t t. t ' e' c

O f  V  .2t

Thus,

E [v ,tl x t ' a t] “  ffi2E [v 2t lxt ' d J  •

if i ,

E [v 2t |dt ] =  E [v 2t|v2t> - x ;n J
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Note that, 

E|v[_ 2t

and

where

Similarly, 

if l-dt= 1,

Consequently,

e [y, i:

<2n>‘,/2e* p < ' R > dv2t] • (pr[v2t>-x;nJ ) '

f(-x;n2>
i-F(-x'n )' t 2

f (XtIT2) = A (2.23)
F(x;nz)

“ J V2t-f (V2t|V2t>-X;n2> dV2t
t 2

f ( V  |V >-X'TI ) =  ^ ^ V 2t^' 2t 2t t 2 1 -------

b ^ > - K ^  = I.x,n f (v2t> dv
t 2

= i-F(-x;n2>

E v Id2t t = E|v |v £ -x'ITL 2t 2t t 2J

- f ( - x ' n  )=  ' t 2'
F(-x'n )' t 2 1

F(-x;n2) 
-a -f (x 'ii )= ' t 2
F(-x;n2)

= A (2.24)

C,dj = x n x + s xd + o-12[^d + A* (l“d) j

= xnx + 5xd + ffjgpd + A* (1-d) J + y x.

(2.25)



www.manaraa.com

We know that v = a v + e , thereforeIt 12 2t t '

Var(vn lxt,dt) = cr*2 Var(v2tIxt,dt) + Var(et) 

Thus, Var(et) = cr̂ - cr̂2 .

var(v2tlxt,dt) = E[v=tlxt,dt] -{E[v2tlxt,d]}

If d=l, E ^ l x ^ d j  = E[v^lxt,v2t>-x;nJ

00

1-F(-x 'II2) I_x/n
t 2

{(-x;n2)f(x;n) + [i-f (-x ;u2) j}

(-v2 /2) 2. \ n*f •v e v 2t dv2t 2t

= a

i + (-x;n2)f(-x;n2) 
i-F(-x;iia)

where a = 1/(1-F (-x'TI2)).
Hence,

var(v2t|x) ,v2t>-x'H2) - 1 + (-x;n2)it-\^ qt. 

If l-dt=l, E[v2tlxt,dt] = E[v^lxt,v2tS-x;nJ

= F(-x;n2) +
Hence,

var(v2tixt,v2lS-x;n2) = i + - a;e= st .

Consequently,

(2 .



www.manaraa.com

where p or,/(cr -cr ) = cr /cr , since we apply normalization 1 12 1
rule on the second reduced form equation.

Using the relationship in Equation (2.25), a consistent 

estimator of cr can be obtained by applying OLS. If we let
A denote the residual from the OLS estimation above, then a 
possible consistent estimator of cr̂ is obtained by the 

estimated residuals of Equation (2.25). From Equation(2.27) , 

the estimated cr̂ is obtained from
A o 1 'cr“1 •' i  \  -  %  t 1 -  i £  w 1- " , ) 8.] <2 - 2 s >t. = I L t = 1 J

2.3.5 THE PARAMETERS OF INTEREST.

From Equation (2.20), the parameters that we are

interested :in are (32,-2 and 5 which are non-linear2
functions of the parameters in (3.

A-i

0,

2
A  A  «
i3 1-2 2

Let

A

A-2

• A

*2 l/Aj
A

Thus, a =
A

2̂
A

A *
= g ( ? 2) = A /A 

-  2' 1
5L 2 J -A /A

L  3  1 - 1

(2.29)

Consequently,
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where

Cov(a )-2'
ag sg'
<9A' Cov(/32) 5A (2.30)

ag = 
ax#

-a 3/ ^

A K1 2
0

0

-1/A,

~7,

■fi 7 -2 2
-6 r2 2

V k

0
0

-7.

and

Similarly,

-7. §2 -I
0
0

1
(2.31)

cov(/3*) = (z;z2)‘1z;cov(w*)z^(z;zj_1 .(2 .3 2)2 2 '

Cov(/3*) = (Z'Z ) -1Z' Cov (w*) Z (Z'Z, )_1 . (2.33)w-1' 11 1 1 1 1 1

2.4 ALTERNATIVE ESTIMATORS.

2.4.1 GLS OF TRANSFORMED MODEL.
As mentioned in the introduction of this chapter, we 

will estimate the parameters of Equation (2.1) using 

alternatives to Heckman's estimator. The first is a 
generalized least squares (GLS) approach to Heckman's model
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as suggested by Amemiya (1978). The first step is to obtain
*  *  • testimates for the covariances of w and v? which are1 2

expressed in Equations (2.19) and (2.20). Our concern is in
* *the dimension of the covariance of w and w which are TxT.1 2

*For large T, performing inverse operation on Cov(wj) and
Cov(w*) may create round-off errors and, most of all, it is 

computationally burdensome.
We can reduce the dimension of the problem by 

premultiplying both sides of Equations (2.5) and (2.20) by a 

set of instrumental variables. An obvious choice is the 
matrix of explanatory variables, X. Therefore, from Equation 

(2.5) we get

Xy = XZ jS* + Xw* . (2.34)M  r-i -i '

The GLS estimator of (2.34) is expressed as 

£*c -{(XZ^ (x'covfw^xr^XZ^j |(XZx) (x'covfw^X)'1^ )

(2.35)

Note that instead of inverting Cov(w*) which is of

dimension T, we take inverse of X Cov(wi)X which has
dimension K. This way we can tremendously reduce the size of

the matrix to be inverted, provide that T>>K.
«The covariance of /3 is

- 1G

Cov(|3*c) = |(XZx) (x'covfwJXJ'^XZ^ | (2.36)

where
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-l.X Cov (w )X = a XX + X(r I +s D )X(XAX) X (r I +5 D ) X' 1 ' 1 ' I T  11 IT 11

+52XD X - 2cr X(y I +5 D )X1 2 12 ' 1 T 1 1

+25 a XD X 112 1

-5 X(y I +5 D ) X (XAX) _1XD X1 IT 1 l' ' ' 1
-5 XB X(XAX) ~1X(tf I +5 D )X (2.37)1 1 '  ' 1 T 1 1 ' '

Similarly,

13*c= (XZ2) (x" Cov (w*) X)_1 (XZ2)
-1 / t t

(XZ2) (X Cov (w*) X) " 1 (Xy:)
(2.38)

and
Cov (/3,,c_) = |(XZ2) (X Cov(W2)X) (XZ2)| . (2.39)

; *The expression for X Cov(w2)X is similar to Equation

(2.35) except that we replace (^1.^+5^) with (^21It+5iDi) .
Aa and its covariance are obtained by the procedures
2G

described in Equation (2.27) and (2.28) ,respectively.

2.4.2 INSTRUMENTAL VARIABLES/OLS.

Our second alternative estimator is based on the 

attempt to eliminate the correlation between d and w and w2 

by using X as a matrix of instrumental variables, as
A

suggested by Amemiya (1978) . Heckman uses F(XIT2) to replace d 
in order to eliminate the correlation with the disturbance 

terms. Substituting Equation (2.3) into Equation (2.1a) and 

rearrange the terms, we get

+ X B +5 d +ul-i l- -i
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[xH, d] e, + w-l

o *Z /3 + w1-1 -l (2.40)

Prexnultiply both sides by X , we get

' ' o • 'Xy = XZ £ + Xw■M 1-1 -1 (2.41)

Equation (2.41) can be estimated by OLS,

f*= |\xz°) (xz°) j 1 £(XZ°) (X̂ ) j (2.42)

with

Cov(|*) = £ (XZ° ) (XZ°) J (XZ10)XCOV(W1)X(XZ1°) [(XZ°) (XZ")] (2

where

X Cov(wi)X or̂ xx -2yiO'i2XX +y^(XX) (XAX)-1 (XX)

Similarly,

Xy = XZ°/3* + Xw-1 2-2 -2

?;= [<XZ°) (XZ°)] 1 [(XZ“) (X^)]

(2.44)

(2.45)

and

C ° v (§*) = (XZ“)X C o v( w2)X(XZ“) |̂ (XZ2) (XZ°)]
(2.46)

where Z-2 = [xQ,d].

X Cov(w2)X is the same as X Cov(wi)X except is

replaced by I/?.,* «2 and its covariance matrix are obtained
A

by the same procedure that we use to derive â .

.43)



www.manaraa.com

27

2.4.3 INSTRUMENTAL VARIABLES/GLS.

Our next alternative is to apply GLS instead of OLS to 
Equations (2.41) and (2.44). We get

13 =-1G (XZ°) (X* Cov (wx) X) _1 (XZ°) ] [ (XZ°) (X# cov (wt) X)_1 (Xyx) J

(2.47)
with

Cov(|*G) = [(XZi°)(X,Cov(Wi)X)“1(XZi0)j . (2.48)

Similarly,

K g = [(XZ°) (X/Cov(W2)X)"i(XZ°)J 1[(XZ;)(X,Cov(W2)X)-1(Xyi)]
(2.49)

Cov(|*G) = [(XZ°) (X,Cov(W2)X)"1(XZ2)J (2.50)

oc is derived from the same process that we use to get“ 2G

V

2.4.4 RESTRICTED LEAST SQUARES.
The final alternative we consider is a restricted least

squares type estimator. From Equations (2.5) and (2.20), we
#can see that we have two estimated values of 6 . When and 

13* are estimated separately we can get two different values

of S . Therefore, we can use restricted least squares
* * , #estimator in the estimation of f^and &2; the restriction

imposed is the two values of 5i are the same.
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For computational purposes we choose to impose the 
restriction on Equations (2.41) and (2.44). The model is 

expressed as,
“ / “i r / . * “i r / "

(2.51)4
r ' o * ■XZ |3 1-1 +

Xw-l

1H
X_J

' 0 * XZ /32-2 Xw-2

or = Q
(3

+ r

where Q =
xz 0

7 < xz 2J

The covariance of the disturbance term r is expressed as

Cov(r)
X,Cov(wi)X X'Cov(w ,w )X 

' 1 ' 2 7

X,Cov(w2,wi)X X'Cov(w2)X
(2.52)

Cov(wi) and Cov(w2) are expressed in Equation (2.19) and 

(2.20).
Cov(w ,w ) = E' i ' 2'

= E f t y ^ r . x ^ - n ^ x v  - i x (na-n2))'] 

= .[* , ]  - E f y ^ ^ x t n ^ ) ) ]

-E[r1x (na-n2)Y; ]+ E[x(n2-n2) <n2-n2)i']

= cr2I - 1 cr A X f X A X r V  - * cr X(XAX)_1XAI T  — 12 ' 1 1 2  '
*2

-f- v ' _i 'Ji- X (XAX) X (2.53)
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The only caution for this alternative is 1 /y should 
not be the same as as the Cov(r) will become singular
for all of the terms of the covariance matrix in Equation
(2.52) are the same. If no restrictions are imposed , the 

estimation of Equation (2.51) is carried on by GLS.

B

where

= |V(Cov(r)) |V(Cov(r) )-1q] (2.54)

*B

The restriction that we want to impose is that 8̂  in /3
has the same value as 6 in /3*. Let H be a column vector1 -2
with dimension (K1+K2+4) . The elements in H have zero 

values except for the (1^+2,1) and (K1+K2+4,l) positions

which have values equal to 1 and -1 , respectively
* . . *The estimation of B with the restriction that HB =0

can be expressed as,
B* = B*- (Q(Cov(r))"1Q)'1H(H(Q(Cov(r)Q)"1H,)'1(HB*). (2.55)
“ H  -  “

A*The covariance of B is described as-R

Cov(B*) = Cov(B*) - Cov(B*)H(HCov(B*)H)_1HCov(B*) (2.56)R

where

Cov (B*) = (Q(Cov(r) )_1Q)_1 . (2.57)

In order to find the estimate of a.that corresponds to
# # * , , , . * ,

13 in B , we simply partition the matrix B m  accordance to— 2 — — R
#• ♦

13 (/3 is the vector of parameters which is the same as— 2 R — 2 R
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/3*, the subscript R denotes that it is from the restricted 
least squares) and then use the similar technique that we 
have been using for other alternatives to transform the 
estimates of B* and its covariance into the estimates and-2R
covariance of a .-2R
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CHAPTER 3

THE MONTE CARLO EXPERIMENT OF THE SIMULTANEOUS 
EQUATIONS GENERALIZED PROBIT MODEL

3.1 INTRODUCTION.
In this Chapter, we perform Monte Carlo experiments on 

Heckman's estimation technique and some of its alternatives. 
With these experiments we can investigate the small sample 
performance of each of the estimation rules. We are 
concerned about the small sample properties of these 

estimation procedures because their small sample variability 
may not be reflected by their theoretical asymptotic 

counterparts.
The plan of this Chapter is as follows. In Section 3.2, 

we discuss the model describing the determinants and effects 

of state-wide bargaining laws simultaneously. We estimate 

this model the way of Heckman's estimation technique and its 

suggested alternatives. In Section 3.3, we explain the 

concept of a Monte Carlo experiment. We also portray the 

criteria we used to evaluate the small sample performance of 

each of the estimation rules. Afterwards, we apply the Monte 
Carlo experiment to Heckman's estimation technique and its 

alternatives. Then we report the small sample performance of 
each of the estimation procedures. Finally, we compute the 

true asymptotic standard errors for the parameter estimates 

obtained from each estimation technique and compare them to 

the finite sample mean square error.

31
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3.2 THE MODEL.
The model that we study is a simultaneous equations 

system with one of the endogenous variables being a latent 

variable. The model is expressed as

PUBUN = K y* + /3 + /3 GOVWAGE + /3 PRIVUNt 1 2t 11 12 t 13 t

+ £ PROPLAW + j8 EAG + £ SOU14 t 15 t 16 t

+ 5 SENT + ul t it

y = y PUBUN + /3 + (3 GOVWAGE + /3 PRIVUN2t 2 t 21 22 t 23 t

+ B CA1 + /3 COPEC + (3 LOGMPRTY27 t 28 t 29 t

+ (3 NWLF + 5 SENT + U2,10 t 2 t 2

y ;i 2t

2t

SENT =t

1 Y * > 0
(3.1)

0 elsewhere

where
GOVWAGE = government employee average salary 

PRIVUN = percentage of all employment organized 
PROPLAW = proportion of contiguous states possessing 

Mandatory Bargaining Law (MBL)

EAG = percentage of employment in the agricultural

sector
SOU = southern states dummy variable

SENT = MBL dummy variable which is equal to 1 
if the state has MBL statue 

PUBUN = percentage of the public sector unionized
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CA1 = number of unfair labor practices cases
charged against an employee

COPEC = fraction of votes by state's delegation to
the U.S. House of Representatives consistent
with AFL-CIO approved position on issues of

interest to organized labor
LOGMPRTY = the natural log of the ratio of the numbers

of the legislature's majority party to the

total number of legislators

NWLF = percentage of non-white labor force

and u and u are the disturbance terms.1 2
In the model described in (3.1), extent of unionization 

and the legal environment regulating unionization are 
jointly determined. We use the data set for the year 1977 
and 1982 published in the Census of Government, which 

includes the 48 contiguous states.
Several studies have attempted to explain the 

determinants of unionization and the legal environment

either in a single equation context or in a simultaneous 

equations context. Hunt and White (1983) study the

determinants of legislative support for public school 

teacher collective bargaining using the ordered probit 
method developed by McKelvey and Zavoina (1975). Saltzman 
(1985) examines the determinants of teacher bargaining
coverage and bargaining laws via a single equation approach.

Hunt, Terza, White and Moore (1986) provide a
simultaneous framework for studying the model in which
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teacher's wage and unionization are the jointly dependent 
variables. Farber (1988) analyzes the evolution of 
bargaining laws for police, teachers and state workers using 
a Markov transition model. Freeman and Valletta (1988) 

examine the effects of legislative index on collective 

bargaining, wages and employment in municipalities. Waters 

(1989) studies the determinations of state-wide bargaining 

laws via the estimation technique developed by McKelvey and 
Zavoina (1975). She also studies the determinants and 
effects of bargaining laws in a simultaneous equations 
context for school teachers, police ,fire fighters and 

public employees.
Using the model described in Equation (3.1), we 

estimate the structural coefficients by applying Heckman's 

estimation technique and its alternatives. The estimation 
techniques that we are going to use are Heckman's procedure 
(HECKMAN), generalized least squares of the transformed 

model procedure (HECKGLS), an instrumental variable / GLS 
procedure (AMEMIYA) and the restricted least squares 

procedure (RLS). We omit the instrumental variable / OLS 

approach because the estimation procedure is contingent on 
an incorrect formulation of the covariance matrices.

The instrumental variable / OLS approach estimates the 
parameters of the first structural equation by the 

relationship
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This is equivalent to assuming that the term X'Covfw^X is 
an identity matrix which is not appropriate. Nevertheless, 

this will be consistent.
The estimated coefficients of the model (3.1) and their 

standard errors are reported in Tables 3.1 and 3.2. HECKGLS, 
AMEMIYA and RLS estimation procedures require the knowledge 

of the covariance matrices Cov(w*) , Cov(w*) , Cov(wi) and 

Cov(w2) ; consequently, we have to estimate their components 
(the parameters <r , cr2, yj, j z and 5i) in advance via 

Heckman's estimation technique; we call these estimates 

'starting values'.
Recalling Equations (2.25) and (2.28)

We estimate c r b y  applying least squares to Equation (3.2). 

The traditional practice is to estimate the parameters <r

As a consequence, both a and are not dependent on
either the starting values or the estimation rules employed 
in estimating the structural parameters.

In Table 3.1, we use the estimates from the HECKMAN 

procedure as the starting values. Afterwards in Table 3.2, 

we use the estimates in Table 3.1 as the starting values in

+ vA 1 (3.2)

(3.3)

and cr2 before the estimation of the structural parameters.
A
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The coefficient
TABLE 3.1

estimates of the selected estimatic
process.

First structural 
(PUBUN)

HECKMAN HECKGLS

equation

AMEMIYA RLS
Y*2 -2.3830 6.5070 7.0723 5.5448
(y%) (4.1091) (7.5084) (11.3249) (5.0937)
ONE 39.2069 54.7112 57.8739 49.2666

<*«> (7.8998) (14.0054) (21.6366) (9.2366)
GOVWAGE -11.4664 -11.4505 -12.4694 -11.0605
O ia) (2.0541) (2.2354) (4.2063) (1.7742)
PRIVUN 0.2170 0.3417 0.3914 0.5008

<*13> (0.0974) (0.1562) (0.2535) (0.1075)
PROPLAW 14.9908 22.4227 24.3429 24.6209

<*14> (2.6561) (6.2382) (11.5163) (4.8765)
EAG -0.8328 -0.7371 -0.7371 -0.3871
(P1S) (0.1975) (0.2509) (0.3546) (0.0949)
SOU -7.0743 -8.2399 -8.0428 -5.9107

<*16> (2.1308) (2.4350) (4.3218) (1.6643)
SENT 13.3007 -29.1647 -36.7625 -32.5057
(«x) (11.5765) (32.9590) (51.8465) (23.6721)
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TABLE 3.1(continue)
The coefficient estimates of the selected estimation

process.

Second structural equation 
(SENT)

HECKMAN HECKGLS AMEMIYA RLS
PUBUN 0.2348 0.0281 0.0136 0.0614
(r2> (0.1561) (0.9855) (0.0201) (0.0198)
ONE 16.8075 1.8092 -0.2897 5.7772

<*21> (47.6064) (24.4659) (8.1073) (3.6245)
GOVWAGE 3.0002 0.4580 0.3234 0.9030
(022) (1.2822) (1.6509) (0.3607) (0.3211)
PRIVUN -0.0813 -0.0106 -0.0043 -0.0452
(023) (0.1643) (0.0957) (0.0238) (0.0128)
CA1 -0.2878 -0.0587 -0.0411 -0.0960
(027) (0.2096) (0.1835) (0.0452) (0.0242)
COPEC 0.0260 0.0025 -0.0014 0.0193

<*28> (0.0269) (0.0300) (0.0081) (0.0033)
LOGMPRTY -6.5865 -1.1605 -0.5208 -2.3829

(12.2396) (6.8097) (2.1201) (0.8632)
NWLF 0.1425 0.0206 0.0051 0.0277

(0.1986) (0.1222) (0.0309) (0.0056)
SENT -2.3558 3.2636 3.4669 1.9961
(«2> (2.1972) (3.0126) (0.6589) (0.7857)

“V i -3.1230 0.8195 0.5000 1.9958

Note: The 
errors.

values in parentheses are the asymptotic standar
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TABLE 3.2
The coefficient estimates of the selected estimation 

process (with iterations).

First structural equation 
(PUBUN)

HECKGLS AMEMIYA RLS
Y*2 5.5669 7.0737 7.8264
( V (10.7382) (11.3708) (11.0188)
ONE 53.0755 57.8862 54.9272
o u > (22.1892) (21.7167) (22.3512)
GOVWAGE -10.2917 -12.4828 -12.3316
o  )13 (3.1039) (4.2300) (4.4677)
PRIVUN 0.3877 0.3914 0.5074

(0.2488) (0.2545) (0.2212)
PROPLAW 20.8582 24.3803 29.0297
o ls) (8.3838) (11.5845) (10.8975)
EAG -0.6673 -0.7162 -0.4313

(0.3805) (0.3559) (0.2538)
SOU -8.6485 -8.0402 -5.8078
(5X) (3.8307) (4.3433) (2.7132)
SENT -30.6036 -36.7735 -42.9409

(54.4235) (52.0497) (50.4754)
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TABLE 3.2 (continue)
The coefficient estimates of the selected estimation 

process (with iterations).

Second structural equation 
(SENT)

HECKGLS AMEMIYA RLS
PUBUN 0.0159 0.0129 0.0445
(r2> (0.0328) (0.0346) (0.0251)
ONE -1.2999 -0.4123 10.0331

<*21> (14.7979) (15.3682) (8.6381)
GOVWAGE 0.3374 0.3154 0.9627

<*22> (0.6426) (0.6597) (0.6002)
PRIVUN 0.0002 -0.0038 -0.0382
(e23) (0.0426) (0.0439) (0.0235)
CAl -0.0418 -0.0402 -0.1119
o 27) (0.0804) (0.0838) (0.0630)
COPEC 0.0005 0.0013 0.0195

<*28> (0.0150) (0.0152) (0.0092)
LOGMPRTY -0.3252 -0.4847 -3.3281

(3.8427) (4.0050) (2.2609)
NWLF 0.0065 0.0044 0.0404

(0.0540) (0.0571) (0.0220)
SENT 3.5256 3.4775 1.9093
(«2> (1.2036) (1.2042) (1.1761)

0.4866 0. 4744 1.9109
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correspondence with the estimation techniques used in Table 
3.2. The resulting estimates are then used as the new 
starting values. We repeat this process until the maximum 
value of the absolute values of the difference between the 

previous starting values and the estimates of the structural 

parameters is less than 1.0E-04. Let £ and a2g denote the 

vectors of the previous starting values, then the stopping
criterion can be expressed as

< 1.0E-04 (3.4)max
A*

B - B-Is -1
a - a-2s -2

A  * Awhere |3 and a2 are the vectors containing the parameters 

estimates of the structural parameters. The maximum number 

of iterations permitted is 20.
From Table 3.1, we see that different estimation 

methods yield vastly different estimates of the same 
parameter. We concentrate on four key parameters; namely, 
y , y2, Si and S2< The RLS procedure is the only procedure

A
which gives the estimate S2 that conforms with the logical 

consistent requirement, 5 2= —3r25i° Moreover, HECKMAN
procedure yields the only negative estimate for the 

parameter y which is not obtained by other estimation 
procedures. RLS procedure provides statistically significant 

estimates for the parameters S2, y2 and 5^ AMEMIYA and 

HECKMAN procedures give statistically significant estimates 
for the parameters &2 and yi, respectively.

From Table 3.2, we observe minimal changes in the 

parameter estimates via AMEMIYA procedure when the iterative



www.manaraa.com

41

routine is introduced. Similar to Table 3.1, RLS gives the 
estimate of the parameter S2 which complies with the logical 
consistent requirements. Furthermore, we find that the 
estimated variability of the estimates of the first 
structural equation obtained from HECKGLS and RLS procedures 
increases noticeably. All three estimation techniques in 

Table 3.2 yield statistically significant estimates for the 

parameter S . The RLS procedure also gives a statistically 
significant estimate for the parameter yz. None of the 

iterative methods take more than ten iterations before the 

stopping criterion, Equation (3.4), is met.
From Tables 3.1 and 3.2, we observe that different 

parameter estimates and measures of variability are obtained 
by utilizing different estimation methods. It is not 
possible to choose the appropriate estimation technique 

based on the information presented in Tables 3.1 and 3.2. As 
a consequence, we use Monte Carlo experiments to examine the 

small sample properties of each of the techniques.

3.3 MONTE CARLO EXPERIMENT.
3.3.1 MONTE CARLO SAMPLES.

A Monte Carlo experiment is a simulation exercise 

designed to investigate the small sample properties of 

estimators. In this experiment, we assume that we know the 
exact nature of the relationships between the endogenous 
variables and the explanatory variables. Consider the 

simultaneous equation system in Equation (2.1)
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(3.5)

(3.6)

Suppose that we know the values of the structural

reduced form parameters as expressed in Equations (2.2) and 

(2.3)

where v and v2 are normally distributed vectors of 
disturbance terms with mean vector 0 and covariance matrix 

2 ,

The reduced form parameters and II2 are defined by the 

relationship

parameters r , *2, (3̂  /32, and S2, we can solve for the

y = xn + 5 d + v
- i  - i  i -  - i

(3.7)

y* = XII + v-2 -2 -2 (3.8)

n = -Br,-i (3.9)

where
n = [ n ,  n2]

-l
r 2

-1
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and

B' =
B B B B B B 0P11 12 13 14 15 16

B B & 0 021 22 23 B B B B27 28 29 2,10

If we know the values of cr and cr , we can derive the1 12
* • •endogenous variables y and y z where the variable d is

obtained by

d = ■t
1 r 2t > 0
0 otherwise

Using a normal random number generator, we construct N 
samples of (Tx2) matrix V, V = [ v , v ] , which are normally 
distributed with mean vectors 0 and covariance matrices Z.

Let W be a (Tx2) matrix whose elements are generated from a
1/2N (0,1) random number generator and let Z be a square 

matrix such that

Z = Z1/2'Z1/2.

We construct a matrix of disturbace terms V with mean

vectors 0 and covariance matrix Z by the relationship
1/2V = w-z

We utilize these N matrices of disturbance terms to 
produce N samples of d and y . We name each of the samples 
of d and y a 'Monte Carlo' sample.

A  iLet B be an estimator of the i-th element of the 

parameter vector /3 where the super-script j denotes that 
the estimator is applied to the j-th Monte Carlo sample, j =

A*
1,2,...,N. We evaluate the small sample performance of B 
by its biasedness, variability and risk (MSE).

i,i
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1. Biasedness.
We observe the biasedness of an estimate from the 

difference between the actual parameter value and the 
average estimated value obtained from our Monte Carlo 

experiments. The bias of a parameter is defined as

BIAS
A * «E 8 JJ i.i _ o*

 N "  P i,i
(3.10)

2. Variability.
A* iWe measure the variability of the estimator B by its
“ 1,1

standard deviation which is defined as

SD(/9* ) = Vli, r

where /3* = E /3*J /N.'i.i J i,i '

 ̂* « E (/3 J J v l,i
-  j2M /2
'l.i'

N
(3.11)

3. Risk(MSE).
We compute two types of risk. First, we estimate the

risk for the individual estimator /3 . Second, we calculate
1 , 1

the overall risk of applying the estimation technique to the 

model (model error).
• A * ■ .The average risk (MSE) of the estimator fi is defined* > 1

as

MSEi,i

 ̂* \ * pE(/3 J - /3 )_ J w i,i
N

(3.12)

a*Let /3 and <*2 be estimators of the parameter vectors

and c*2, respectively, /3 is the vector of the structural—i
parameters of the first equation and a is the vector of the
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parameters of interest of the second structural equation. 
Furthermore, let /3*J and denote that we apply the
estimation rule to the j-th Monte Carlo sample. We then 

define the model error risk for the first and second 

structural equation as

RISK = J (fi*1 - 0*) ' (.8*J “ ej/N (3.13)
1 -1 -1 -1 -1

and
n A A

RISK2 * \ {a} - a2)' - of2)/N (3.14)
J = i

respectively.

3.3.2 MONTE CARLO EXPERIMENTS RESULTS.
In this section, we report the results from the Monte

Carlo experiments. As discussed in the preceding section, we

assign the parameter values and generate the data in the

experiments. The parameter values selected to be the actual

parameter values are those of the Heckman's estimation

technique in Table 3.1. We choose these values for the

purpose of defined asymptotic standard errors which we

discuss later on. Nevertheless, we have to calculate a new
estimate for the parameter 8^ to ensure that the consistency

requirement 8^ = ~&XV2 is met.
Assigning the actual parameter values is not as simple

as it appears to be. We discovered that some values of the
parameters are not usable in the experiments. By being not

usable, we mean that some parameter values lead to negative

estimated values for the asymptotic variances for some of
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the parameters, which is an extreme undesirable property. We 
find that the parameter values of the HECKMAN procedure must 

be scaled down so that they are usable for all of the
estimation techniques. We divide the parameter estimates of

the second structural equation by 8, which is the smallest
value that eradicates the problem of negative estimated 
asymptotic variances. However, we also have used the square 

root of the variable PROPLAW in place of its original value 
to reduce its variation. This solves the problem of its
approximated asymptotic variance being negative. The true 
parameter values used in the Monte Carlo experiments are 

presented in the first column of Table 3.3.
We have also experimented using the estimates obtained 

from other estimation techniques as the actual parameter 
values. The estimates for the techniques which incorporate 
generalized least squares have one feature in common. 

Refering to Section 3.3.1, we use the structural parmaters 
to derived the reduced form parameters. The reduced form 

parameter vectors that are obtained from the techniques 

which incorporate generalized least squares result in the 

product XII2 being less than zero for all observations. 

Keeping this feature in mind and bringing to mind how the 
variable d is generated in the Monte Carlo experiments, we 
realize that by using the parameter estimates from other 

techniques besides Heckman's, the generated d variable will 

be very likely to take on the values of zero which create 
very little scattering of the data generated. Moreover, as
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we shall see in the next section, when XIT2 is less than zero 

for every observation, the asymptotic standard errors of the 
techniques using the instrumental variables approach are not 

defined.
For the covariance matrix used in the Monte Carlo 

experiments, the values of and are the estimates
obtained via applying Equations (3.2) and (3.3) to the

original data set. In order to be consistent with the 

scaling of the parameters of the second structural equation, 
the estimate of is divided by the same constant, 8 .

Consequently, the covariance matrix used is

"5 1 .5 4 0 6  - 0 . 6 3 3 6

- 0 .6 3 3 6  1

The constant 1 is not changed for 0  ̂= 1 due to

identification condition (see Section 2.2).
While we were performing Monte Carlo experiments, we 

came across the problem of unusable estimated parameter 

values often. In other words, many Monte Carlo samples give 
negative estimated variances for at least one of the

parameter estimates. Thus, we eliminated such samples and 

generated replacements. We find that far more than a

thousand Monte Carlo samples must be generated to obtain a 
thousand sets of parameter estimates of which all asymptotic 

variances are positive. The total number of Monte Carlo 

samples generated for the HECKMAN, HECKGLS, AMEMIYA and RLS 

procedures are 1646, 2004, 2476 and 4235, respectively. The
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difference in the number of total Monte Carlo samples 
generated suggests that each procedures can accept different 
combinations of the parameter estimates and the estimates of 

the covariance matrix components.
As described in Section 2.4.4, the RLS procedure is not

defined whenever 7 = 1/7 . By utilizing the term Cov(w ,w )1 2  1 2
as one of the elements in the RLS procedure, when = l/?2
the terms Cov(w), Cov(w ) and Cov(w ,w ) are all identical1 2 1 2
and hence causes the covariance of the vector of disturbance 
terms r, Equation (2.52) to become singular. Some Monte 
Carlo samples yield the estimates of and ?2 which are 

nearly identical and makes the RLS procedure undefined. Once 
we encounter such a sample, we drop that particular sample 

and generate its replacement. The problem of undefined RLS 
procedure is not a serious one; of the 4235 Monte Carlo 
samples generated for the RLS procedure, only 8 samples 

cause this problem.
As outlined earlier, we use a Monte Carlo experiment 

for each of the estimation techniques to study their small 

sample properties. We obtain a thousand sets of estimates 
for the structural parameters for each of the estimation 

techniques and present their average values together with 
the true parameter values in Table 3.3. The last row of 

Table 3.3 is the average values of the negative of the 

product between the estimates of and ?2 in order to test 

how strongly the logical consistency requirement is 

implemented.
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TABLE 3.3
Average values of the parameter estimates obtained 

through Monte Carlo experiment.

First structural equation 
(PUBUN)

ACTUAL HECKMAN HECKGLS AMEMIYA RLS

Y* -2 . 3830 6.2237 16.0281 -6.6288 -31.4698
ONE 39.2069 48.8574 65.4825 30.5729 -16.5942
GOVWAGE -11.4664 -13.0767 -10.5118 -11.0677 -6.3286
PRIVUN 0.2170 0.2305 0.1365 0.2249 0.3759
PROPLAW 14.9908 14.3617 12.9156 13.8236 7.0950
EAG -0.8328 -0.7823 -0.8784 -0.7885 -0.3796
SOU -7.0743 -6.7742 -7.9864 -6.6523 -3.7791
SENT 13.3007 -7.4779 -34.2523 29.6112 106.5000

Second structural equation 
(SENT)

PUBUN 0.0294 0.1253 -0.0030 -0.0053 -0.0194
ONE 2.1009 -16.8970 -2.4216 -1.9342 -1.9567
GOVWAGE 0.3750 0.2226 -0.0858 -0.0398 -0.3577
PRIVUN -0.0102 -0.0387 0.0021 0.0027 0.0069
CA1 -0.0360 -0.0323 0.0069 -0.00001 0.0382
COPEC 0.0033 -0.0327 0.0005 -0.00007 -0.0033
LOGMPRTY -0.8233 2.5657 0.2310 0.1242 0.2706
NWLF 0.0178 -0.0019 -0.0039 -0.0005 -0.0139
SENT -0.3904 5.9432 3.1670 3.2365 4.0383

10.8299 -4.0703 0.1139 4.0372



www.manaraa.com

50

For the first structural equation, the AMEMIYA and RLS 
procedures yield the correct signs for both of the key
parameters y and 5i, on the average. However, almost all 

estimation techniques, with the exception of the RLS
procedure, give the average estimated values of other

parameters in the first structural equation besides y and 

Si which closely resemble the true parameter values.
For the second structural equation, none of the

estimation techniques being considered yield satisfying

estimates of the structural parameters. None of the
techniques give the correct signs for the average values of 
the estimates of k2 and 8z. Furthermore, the average
estimated values for the structural parameters do not
closely approximate the true parameter values. Nevertheless, 

the RLS procedure still guarantees the logical consistency 

requirements as indicated by the term -i jf .
In Table 3.4, we report the bias of the estimates along 

with the calculated standard errors and mean square errors 

obtained from the Monte Carlo experiments. The traditional 

HECKMAN procedure gives the smallest standard errors and 
mean square errors for the estimates of all parameters in 

the first structural equation. However, the HECKMAN 

procedure does not produce estimates with the lowest bias 

for all estimates.
On the contrary, the estimates of the HECKGLS procedure 

have the smallest total mean square error in the second 

structural equation. But not all parameter estimates of the
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TABLE 3.4
Bias, standard errors and mean square errors of the 

parameter estimates obtained through Monte Carlo 
experiments.

First structural equation 
(PUBUN)

Y*
HECKMAN
8.6067

HECKGLS
18.4111

AMEMIYA
-4.2458

RLS
-29.0868

Ct
(44.2635) 
2033.30

(820.7) 
6.7E05

(172.200) 
3.0E04

(240.600) 
5.9E04

ONE 9.6505 
(58.3161) 
3493.90

26.2756
(1147.3)
1.3E06

-8.6350 
(233.500) 
5.5E04

-55.8016
(335.200)
1.2E05

GOVWAGE 0.3897 
(2.8662) 
8.3669

0.9546 
(21.7914) 
475.800

0.3987 
(5.8266) 
34.1078

5.1378 
(7.2360) 
78.7570

PRIVUN 0.0135 
(0.1333) 
0.0179

-0.0805
(2.1326)
4.5544

0.0079 
(0.2742) 
0.0753

0.1589 
(0.3803) 
0.1698

PROPLAW -0.6291 
(4.0087) 
16.4654

-2.0752 
(51.1505) 
2620.70

-1.1672 
(9.4199) 
90.0973

-7.8958 
(15.3988) 
299.50

EAG 0.0505 
(0.2666) 
0.0736

-0.0456
(1.8826)
3.5462

0.0443 
(0.5960) 
0.3572

0.4532 
(0.8348) 
0.9023

SOU 0.2996 
(2.7454) 
7.6268

-0.9121 
(16.9835) 
289.300

0.4220 
(8.1891) 
67.2400

3.3952 
(6.7119) 
55.9075

SENT -20.7786 
(116.700) 
1.4E04

-47.5530 
(2394.7) 
5.7E06

16.3105
(469.900)
2.2E05

93.1687 
(667.600) 
4.5E05

Total MSE 2.67E5 7.73E6 3.06E5 6.29E5

The values in parentheses are the standard errors and 
the values in bold are the mean square errors.
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TABLE 3.4(continue)
Bias, standard errors and mean square errors of the 

parameter estimates obtained through Monte Carlo 
experiments.

Second structural equation
(SENT)

PUBUN
HECKMAN 
0.0959 
(2.9997) 
9.0071

HECKGLS
-0.0323
(0.0975)
0.0106

AMEMIYA 
0.0347 
(0.0964) 
0.0105

RLS 
-0.0487 
(0.7017) 
0.4947

ONE -18.9980 
(490.600) 
2.4E05

-4.5225 
(14.6193) 
234.200

-4.0352
(17.6756)
328.700

-4.0572 
(36.5004) 
1348.700

GOVWAGE -0.1524
(2.5906)
6.7345

-0.4608 
(2.9405) 
8.8592

-0.4148 
(0.8832) 
0.9520

-0.7327
(11.2709)
127.6

PRIVUN -0.0285 
(1.0295) 
1.0607

0.0123 
(0.0576) 
0.0035

0.0129 
(0.0655) 
0.0080

0.0171 
(0.3287) 
1.9498

CA1 0.0683 
(1.8425) 
3.3996

0.0429 
(0.2286) 
0.0541

0.0360 
(0.0817) 
0.0045

0.0742 
(1.3944) 
0.1083

COPEC -0.0360 
(0.9631) 
0.9288

-0.0028 
(0.0183) 
3.4E-4

-0.0033 
(0.0114) 
1.4E-4

0.0065 
(0.1540) 
0.0238

LOGMPRTY 3.3890 
(86.2970) 
7458.7

1.0543 
(3.3222) 
12.1483

0.9475
(3.9191)
16.2567

1.0939 
(12.2268) 
150.70

NWLF -0.0197
(0.5178)
0.2685

-0.0218 
(0.0779) 
0.0065

-0.0183 
(0.0501) 
0.0028

-0.0317
(0.5316)
0.2836

SENT 6.3336 
(136.700) 
1.9E04

3.5574 
(10.0609) 
113.900

3.6268 
(6.5986) 
56.6960

4.4287 
(44.1104) 
1965.3

Total MSE 1192.4 369.1825 402.6306 3596.1602
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HECKGLS procedure have the lowest mean square error; some of 
the parameters estimates obtained from the AMEMIYA procedure 
have lower mean square errors than those of the HECKGLS 

procedure . The AMEMIYA and HECKGLS procedures are both 

outstanding techniques to be used in estimating the second 

structural equation compared to the traditional HECKMAN 

procedure.
To sum up, one must be careful in choosing the 

appropriate technique for the problem at hand since there is 

no clear-cut rule. The rule of thumb is that the traditional 
HECKMAN procedure ought to be used when the attention is on 

the first structural equation but the AMEMIYA or HECKGLS 

procedure ought to be used when the attention is on the 

second structural equation. Therefore the researcher has to 
weigh the importance of the first structural equation 

against the second structural equation. Nevertheless, the 
AMEMIYA procedure is an excellent alternative to the HECKMAN 

procedure since its total mean square error in the second 

structural equation is roughly 0.003 times of the mean 

square error of the HECKMAN procedure. The total mean square 

error of the AMEMIYA procedure in the first structural 
equation is 15 times that of the HECKMAN procedure.

If we add up the total mean square errors of the first 

and second structural equation, the HECKMAN procedure has 

the lowest overall mean square error. Nevertheless, using 

the overall mean square error to evaluate the performances 

of the estimation technique is misleading for the mean
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square errors of the first structural equation are 
overwhelmingly larger than those of the second structural 
equation simply due the difference in the absolute values of 
the estimates. Consequently, the technique that best perform 

in estimating the first structural equation is likely to be 
chosen regardless of its performance in the second 

structural equation. Next we study the distributions of the 

estimates from each of the estimation techniques to give us 
a more thorough understanding in the characteristics of the 
estimators. We find the descriptive statistics for the four 

key parameters, y2, and S2 and present them in Tables
3.5 through 3.8 together with the distribution plots.

For the parameters y and 5i, only the estimates 
obtained from the HECKMAN procedure show well formed 

distributions. The frequency distribution plots of the 
estimates of y and Si obtained from the HECKGLS, AMEMIYA 
and RLS procedures are sketchy at the very least and 

are scattered over tremendous ranges.
The frequency distribution plots of the estimates of yg 

and &z obtained from the HECKGLS and AMEMIYA procedures more 

closely resemble one another than suggested by the 
descriptive statistics. However, the peak of their frequency 
distribution plots are not concentrated around the actual 

parameter values unlike those of the HECKMAN procedure. The 
disadvantage of the estimates obtained from the HECKMAN 

procedure are their very large variation. Therefore, there 
is evidence of trade-off between biasness and variability.
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TABLE 3.5
The description of the distribution of the estimates of

the parameter y .

mean
std
skewness
kurtosis
max
min
median

HECKMAN
6.2237

44.2635
-1.1725
59.0450
558.9

-553.0
4.5604

y =-2.3830l
HECKGLS
16.0281
820.7 

-0.3302
131.7 
12673

-12304
2.9103

AMEMIYA 
-6.6288
172.2 

-4.6104 
62.1709
873.6 

-2348.7 
-0.7752

RLS
-31.4689

240.6
-7.6885
125.0
1288.5

-4359.0
-12.6582

FIGURE 3.1 
The frequency distribution of yi
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TABLE 3.6
The description of the distribution of the estimates of

the parameter 5 .

mean
std
skewness
kurtosis
max
min
median

HECKMAN
-7.4779
116.7
1.0686

56.0987
1414

-1427
-2.6165

S = 13.3007I
HECKGLS

-34.2523
2394.7
1.8480
144.9
39380

-35394
-2.8487

AMEMIYA 
29.6112
469.9 
4.3409 

55.5316
6469.5 

-2377 
13.2910

RLS
106.5
667.6 
8.0464
136.7 
12526

-3249.5
57.7578

FIGURE 3.2
The frequency distribution of
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TABLE 3.7
The description of the distribution of the estimates of

the parameter y .

mean
std
skewness
kurtosis
max
min
median

HECKMAN 
0.1253 
2.9997 

30.6855
963.0 

93.9723 
-5.1406 
0.0319

y = 0.0294
HECKGLS 

“0.0030 
0.0975 

-17.3648
420.7 
0.4298 

-2.4652 
0.0003

AMEMIYA 
-0.0053 
0.0964 

-12.5335
278.2 
0.9238 

-2.1557 
0.0001

RLS 
-0.0194
0.7017 

-25.0754
744.3 
4.1869 

-20.5875 
- 0.0022

FIGURE 3.3
The frequency distribution of y_
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TABLE 3.8
The description of the distribution of the estimates of

the parameter 5 .

mean
std
skewness
kurtosis
max
min
median

HECKMAN
5.9432
136.7

31.0881
980.0
4302

-109.4
1.0253

5 =-0.39042
HECKGLS 
3.1670 

10.0609 
25.0969 
723 .5
295.9 

-23.1698 
2.7668

AMEMIYA 
3.2365 
6.5986 

19.0264
475.7
174.7 

-36.3709
2.8138

RLS 
4.0383 

44.1104 
27.0495
819.1 
1329 

-194.9 
2.8342

FIGURE 3.4
The frequency distribution of 52
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3.3.3 THE CHARACTERISTICS OF THE MONTE CARLO SAMPLES USED.
Recall that not all Monte Carlo samples generated can 

be used in the experiments for some of the samples lead to 
negative estimated asymptotic variances of the parameter 
estimates. Each estimation technique needs different groups 

of Monte Carlo samples to come up with a thousand sets of 
parameter estimates for which all have positive estimated 
asymptotic variances. Therefore, the Monte Carlo samples 

used for each estimation technique contains useful 
information regarding their characteristics.

Recall that the parameters cri2 and cr̂ are estimated 
prior to the estimation of the structural parameters, as a 
consequence, the estimates of <r and cr̂ are not dependent 
on the estimation techniques used in estimating the 

structural parameters. We get the same estimates of cri2 and 
cf if the same Monte Carlo samples are used regardless of 
the estimation techniques used in estimating the structural 

parameters. Accordingly, the information concerning the 
characteristics of the generated Monte Carlo samples that 
yield positive estimates of the asymptotic variances for all 

structural parameters for each estimation techniques are 
captured by the estimates of cri2 and cr\

In Tables 3.9 and 3.10, the descriptive statistics of 

the estimates of cri2 and cr̂ obtained through performing a 
Monte Carlo experiment for each of the estimation techniques 

are presented along with the frequency distribution plots.
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TABLE 3.9
The description of the distribution of the estimates of

the parameter cr12
a = -0.6636 12

HECKMAN HECKGLS AMEMIYA RLS
mean 0.3230 -3.9887 -3.1900 -2.5698
std 23.3971 23.0758 21.4482 18.7341
skewness 0.2486 0.7524 2.0927 -0.3606
kurtosis 9.4950 12.1878 27.1614 10.6162
max 177.4 177.4 230.3 115.1
min -130.9 -133.2 -99.0670 -113.3
median 0.9879 -3.4266 -2.2313 -1.1599
mse 6.9436 5.8408 5.4693 7.4507

-6 0

FIGURE 3.5 
The frequency distribution of cr12
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TABLE 3.10
The description of the distribution of the estimates of

2the parameter ô .

HECKMAN
cT2 =51.5406l
HECKGLS AMEMIYA RLS

mean 370.8 373.9 328.9 259.1
std 984.0 1080.1 1422.8 669.6
skewness 10.7419 9.4935 15.8972 6.5635
kurtosis 175.1 133.6 325.1 58.47
max 19810 19810 33119 8251.3
min 28.97 28.97 31.01 31. 80
median 123.8 106.1 73.2940 60.1892
mse 186.5 76.7011 169.7 1466.9

FIGURE 3.6
The frequency distribution of <r
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The estimates of cr and cr2 obtained via the Monte Carlo12 1
samples used in the experiment of the HECKMAN procedure are 
very dispersed which suggests that the HECKMAN procedure is 
able to handle a wide range of fluctuation in the data. The 
HECKGLS procedure, however, appears to perform in the same 
range data fluctuation as that of the HECKMAN procedure.

The procedures that use the generalized least squares 
approach show that they are sensitive to the fluctuation in 

the data set. All the generated Monte Carlo samples that 
produce positive estimates of the asymptotic variances of 

the procedures employing the generalized least squares 

approach give estimates of and cr2 that are concentrated 
around the actual values. Furthermore, the RLS procedure 
which imposes an additional restriction in the estimation 

process yield estimates of cr and cr2 with great precision. 
The evidence indicates that the Monte Carlo samples which 

produce the estimates of <x^ and cr2 which do not agree with 
the actual values are very likely to be rejected by the 

estimation techniques employing the generalized least 

squares approach.

3.3.4 THE ASYMPTOTIC STANDARD ERRORS.

In this Section, we address the question concerning the 

ability of the standard errors obtained from the Monte Carlo 
experiments in approximating the actual asymptotic standard 

errors. We mentioned in the introduction that the small
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sample variability may not be the same as the theoretical 
asymptotic variability. We approximate the small sample 
variability through the standard deviations of the parameter 
estimates obtained through the Monte Carlo experiments. Then 

we calculate true asymptotic standard errors by substituting 
the actual parameter values into the asymptotic covariance 
matrix equations. The means of calculating the actual 
asymptotic standard errors for the HECKMAN, HECKGLS, AMEMIYA 

and RLS procedures are described below.

1.HECKMAN procedure.
Recall that we estimate the parameters of the first 

structural equation by the relationship

£* = (Z'Zi)'1Z'yi . (3.15)

Using the relationship in equation (2.5)
* * *y = Z /3 + w■m 1-1 -l

Consequently, we get

= (Z'Z )_1Z' (Z /3* + w*)-i ' i i ' 1-1 -i'

(Z'Z ) (Z'Z )/3 + (Z'Z ) Z'w' l i' v i i '- i v l i' l-i

-ir= (9 + (Z'Z ) Z'W . (3.16)-l v i i7 l-i 1 7

Next, we want to determine the limiting distribution of the
A# *sequence vT- (|3 - (3̂) as T-*». We have

VT- (ff* ~ 13*) = /T-(Z'Z )-1Z'w* -1 -1 v i i 7 1-1

= (Z'Zi/T) -1Z'w’/VT . (3.17)
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A#The asymptotic variance-covariance matrix of V'T(/3i - (3) is 

plim Z'Z 1 1 Zi Cov(w*) Z 1 Z'Zl l
T V'T 1 VT T

-l

Now
1
T

= plim T [

= plim

(Z'Z )

[ xft2 - X , f]' [ • ]

n' x' xn2 2 n x'x2 1 n x'2
x'xn1 2 X'X1 1

AX'Fl
A  AFxn F'X

A  A
F; F

(3.18)

2 1
We substitute the following expression for the expression in 

equation as an approximation (3.18)

i r x ' x n  n x'x2 2 2 1
X' XII1 2 X'X1 1

n x'2
X'Fl

F x n  F'X F'F2 1

Similarly, we use (1/i/T) £xil2, Xt , fJ as the proxy for
*plimfZ'/VT) . With the expression for Cov(wi) described m  

Equation(2.19) , we are now able to calculate the asymptotic 

standard errors for the parameters of the first structural 
equation by substituting in the actual parameter values. The 
calculated true asymptotic covariance matrix of the first 

structural equation is expressed as

Cov (|3*) = j-Cov(w*) • jfZ'Z^Z'j#

with the term Jxil2, , F j replacing the matrix Z where Ft=

F(x'H ) and F is the cumulative distribution function of the ' t z '

normal distribution. The standard errors for the second 

structural equation are also acquired in the same manner.
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2.HECKGLS procedure.
Recalling Equation(2.3 5), the estimates for the 

parameters of the first structural equation are obtained by 

the relationship

q[G = ĵ (x/zi)/ (X'cov(w*)x) 1 (X/Zi)j [(x'z^' (x'Cov(w‘)X)_1x'yJ .

= j§* + S’̂ X ' Z ^ '  (X'Cov(w*)X) (X'w*)J (3.19)

where S = (X'Z^ ' (X'Cov(w’) X) _1 (X'Z^ .
Similar to the case of HECKMAN procedure, we want to

*» *find the limiting distribution for the sequence vT(/3, - fl )— 1 G ” 1

as T-*x>. We have

✓T(§*0- §*) = V'^X'Z/^T)' (X'Cov(w*)X)_1X'w*]

where

V « ^(X'Zj/i/T)' (X'Covfw^X)'1 (X'zyV'TjJ
A * * •The asymptotic variance-covariance matrix of vT(£ic - £ ) is 

described as

plim V^jx'Zj/v^r)'(X'Cov(w[)X)"lX'w*j.-1 J-V1

= plim V"1 . (3.20)

Again, the term plim (X'Z /VT) is substituted by

vf“[xn2' Xi' F]
The expression for the asymptotic covariance of HECKGLS 

procedure is described in Equation (2.36) as
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As we did for the HECKMAN procedure, we use the true
* .parameter values in the expression for Cov(wi) in Equation 

(3.20) and the term |xil2, X i , fJ replacing the matrix Z ^ o  
obtain the true asymptotic standard errors for the 
parameters of the first structural equation. We find the 

asymptotic standard errors for the second structural 

equation in the same manner.

3. AMEMIYA procedure.
The instrumental variable/GLS or AMEMIYA procedure 

estimates the parameters of the first structural equation by 

the relationship

fic = £(X'Z°)' (X'Cov (w^) X) 1 (X'Z°) J [(X'Z°)' (X'Cov(wi)X)'1(X'yi)J

= |3* + W"1 £(X'Z°) ' (X'Cov(wi)X)"1(X'wi) J (3.21)

where W = £(X'Z°)' (X'Cov(wt)X)_1 (X'Z°) j .

Now we have

^T(§*g - |3*) = V_1[(X'Z°/v/T)' (X'Cov(Wi)X)~1(X'Zi°/v'T)j

where V = j\x'Z°/T/T)' (X'Cov(wi)X)“1(X'Z°/v'T) J .

We write the asymptotic variance-covariance matrix of 

v/T(j3*c - §*) as

plimV"1 (X'Z°/VT)' (X'Cov(wi)X)"1X'wiwi,X(X,Cov(wi)X)“1 (X'Z°/VT) V-1 

= plimV-1.

The matrix Z° is described as

4
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- K '  xi - d]
Therefore,

x x z^/v't = | i / 2 [x 'x n 2, X'X1 , X'dj

We use the following expression instead of plim X'Z°/VT as 

an approximate

| i / 2 | x ' x n 2, X'XX , x 'd j

where d =t
o i f  x 'n  <ot 2

i if x'n sot 2

-1

By substituting in the actual parameter values in the 
expression for Cov(wx) in Equation (2.48) together with the 
approximate of plimX'Z°/\/T, we obtain the asymptotici.
variance-covariance matrix of the estimates for the 

parameters of the first structural equation which is 

expressed as

Cov(?*G) = [ (X'Z°) ' (X'Cov(wi )X)“1 (X'Zx)J

The asymptotic covariance matrix for the estimates of the 

parameters of the second structural equation are acquired in 

similar manner.

4. RLS procedure.
The restricted least squares procedure estimates the 

parameters of both structural equations and imposes the 
restriction that the estimates of §x in both structural 
equations are the same, simultaneously (Section 2.4.4).
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The covariance matrix of the restricted least squares 
estimator is expressed as

Cov (B*) = Cov (B*) - Cov(B*)H' (HCov(B*) H') _1HCov(B*) (3.22)R

where

Cov (B*) = [(T (Covfr))"^]'1

and

Q =
X'Z

X'Z.

Cov(r) =

X'Cov^JX X ,Cov(wi,w2)X

X'Cov(w )X2

We have
A *B = |q ' (Cov(r)) -1oj jV (Cov(r)) *qj

where

(3.23)

q = QB + r

X'y ;

= Q'

r- * -i

+
rx'w i

x 'y1
*

e2 _
X'W-2

Following the same procedure as other estimation procedures, 

we can show that

i/T(B* - B*) = £q '/V'T(Cov(r))"1Q/v'tJ [q '/Vt (Co v (r))_1rj
A #and the asymptotic variance-covariance matrix for \/T(B - B)

is described as

plim j^Q'/v'T(Cov(r) )_1Q/VtJ
-l
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As for the previous procedures, we approximate for the term 
plim Q/V'T in which we use £xn2/ Xi, dj and |xri2, -X2, dj to 
replace Z° and Z° in the calculation of the true asymptotic 

covariance matrix, respectively. Note that

d =t
fo if x ' n  <ot 2
1 otherwise

It is simple to show that the asymptotic covarince matrix of
A # . . .B is the same as the expression m  Equation (3.22). WeR
calculate the true covariance matrices of the first and 
second structural equations all together by substituting the 

true parameter values into Equation (3.22).
In Table 3.11, we present the actual asymptotic 

standard errors, the standard errors obtained through the 
Monte Carlo experiments and their percentage differences. 

Let A denote actual asymptotic standard error of a parameter 
estimate and s denote standard error obtained through Monte 
Carlo experiments, the percentage difference between A and S 

is defined as [(A-S)/S]xl00.

The standard errors of the HECKMAN procedure obtained 

via the Monte Carlo experiments underestimate the asymptotic 

standard errors for all parameters in the first structural 
equation except for the parameter associated with the 
variable PROPLAW; in contrast, the asymptotic standard 
errors of the second structural equation are overestimated 

except for the parameter associated with the variable 
GOVWAGE. The standard errors obtained through the Monte 

Carlo experiments of the HECKGLS procedure underestimate the 

asymptotic standard errors of the estimates of the
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TABLE 3.11
The calculated actual asymptotic standard errors.

First structural equation 
(PUBUN)

HECKMAN HECKGLS AMEMIYA RLS
160.9000 1613.30 70.5308 28.3506
(44.2635)
-72.9

(820.7) 
-49. 1

(172.200)
144

(240.600)
749

ONE 211.3000 
(58.3161) 
-72. 4

2118.70 
(1147.3) 
-45. 9

28.6507
(233.500)

714

12.0963 
(335.200) 
2671

GOVWAGE 2.8781
(2.8662)
-0.4

3.4568 
(21.7914) 
530. 4

5.4986
(5.8266)
6.0

2.4331
(7.2360)
197

PRIVUN 0.1361 
(0.1333) 
-2. 1

0.1436
(2.1326)
1385

0.2572
(0.2742)
6.6

0.1134 
(0.3803) 
235

PROPLAW 1.7385
(4.0087)
130.6

13.7361 
(51.1505) 

272.0

11.1073 
(9.4199) 
15.2

4.9587
(15.3988)

210

EAG 0.2700 
(0.2666) 
-1. 3

0.4513 
(1.8826) 
317. 0

0.6941 
(0.5960) 
-14.1

0.3129
(0.8348)
167

SOU 2.8105 
(2.7454) 
-2. 3

9.5070 
(16.9835) 

78. 6

9.0700 
(8.1891) 
-9. 7

3.9415 
(6.7119) 

70. 3

SENT 422.2000 
(116.700) 
-72. 3

4236.30
(2394.7)

-43.5
60.1810 
(469.900) 
680. 0

24.6451
(667.600)

2609

The values in parentheses are the standard errors 
obtained from the Monte Carlo experiments and the values 
typed in bold are the percentage difference between the 
estimated standard errors and the true asymptotic values.
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TABLE 3.11(continue)
The calculated actual asymptotic standard errors.

Second structural equation 
(SENT)

HECKMAN HECKGLS AMEMIYA RLS
PUBUN 0.2340

(2.9997)
1811

2.5017 
(0.0975) 
-96.1

0.6506
(0.0964)
-85.2

0.0325
(0.7017)
2059

ONE 41.8935
(490.600)

1071

295.0 
(14.6193) 
-95. 0

61.2016 
(17.6756) 
-71.1

4.5566
(36.5004)

701

GOVWAGE 2.8328
(2.5906)
-8.6

31.8027 
(2.9405) 
-90. 8

8.4539
(0.8832)
-89.7

0.4373
(11.2709)

2477

PRIVUN 0.1226 
(1.0295) 
739. 7

0.8912 
(0.0576) 
-93. 5

0.2302 
(0.0655) 
-71. 6

0.0166
(0.3287)
1880

CA1 0.3019 
(1.8425) 
510. 3

3.0348
(0.2286)
-92.5

0.6995 
(0.0817) 
-88. 3

0.0307
(1.3944)
4442

COPEC 0.0312
(0.9631)
2986

0.2797
(0.0183)
-93.5

0.0582 
(0.0114) 
-80. 4

0.0034 
(0.1540) 
4429

LOGMPRTY 9.9664 
(86.2970) 
765. 9

71.4107 
(3.3222) 
-95. 4

20.0309 
(3.9191) 
-80. 4

1.2070
(12.2268)

912.9

NWLF 0.1835 
(0.5178) 
182.2

1.5171 
(0.0779) 
-94. 9

0.3364 
(0.0501) 
-85. 1

0.0193 
(0.5316) 
175. 4

SENT 23.8048
(136.700)
474.3

253.80 
(10.0609) 
-96. 0

23.4299 
(6.5986) 
-71. 8

1.1321 
(44.1104) 

3796
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parameters y ̂ a n d  the intercept term in the first 
structural equation while they underestimate all of the
asymptotic standard errors in the second structural 
equation. The standard errors obtained through the Monte 

Carlo experiments for the AMEMIYA procedure overestimate the 

asymptotic standard errors of parameters associated with the 

variables EAG and SOU while underestimate asymptotic
standard errors of the others parameters in the first

structural equation. Similar to the case for the HECKGLS

procedure, the standard errors obtained via the Monte Carlo 
experiments for the second structural equation underestimate 

the asymptotic standard errors of the second structural 
equation. Finally, the standard errors obtained through the 

Monte Carlo experiments for the RLS procedure overestimate 

the asymptotic standard errors for all parameters in both 

structural equations.
Several remarks can be made based on Table 3.11. First, 

the standard errors obtained from the Monte Carlo 

experiments of the HECKMAN procedure give the best estimates 
of the asymptotic standard errors in the first structural 

equation while those of the AMEMIYA procedure give the best 

estimates of the asymptotic standard errors in the second 
structural equation. Second, by using the generalized least 

squares approach with the HECKMAN procedure, we increase the 
asymptotic standard errors in both of the structural 

equations. Third, the asymptotic standard errors from the 

AMEMIYA procedure are less than those of the HECKGLS
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procedure for most of the parameter estimates in both 
structural equations. Lastly, the RLS procedure yields the 
smallest asymptotic standard errors for the estimates in the 

second structural equation even though this is not reflected 
via the Monte Carlo experiments.

From Table 3.11, the Monte Carlo experiments show that 

the small sample properties of the estimation techniques, 
namely the HECKMAN, HECKGLS, AMEMIYA and RLS procedure, are 

quite dissimilar to their asymptotic theoretical 
counterparts. A plausible explanation is the fact that not 
all Monte Carlo samples can be used in the experiments which 

may lead to the failure of capturing all aspects of the

characteristics of each estimation technique.

3.3.5 AN ALTERNATIVE ESTIMATION TECHNIQUE OF THE COVARIANCE 

MATRIX.
Recall that we estimate the parameter <r by applying 

least squares to Equation (3.2) which is expressed as

E[yx, |x , d] - xn + 5xd + cri2p d  + A*(l - d)J + vx

where

A = f (X'n )/F(x'n ) andt ' t - 2 ' t - 2

a* = -a F(x'n )/F(-x'n ).t t v t - 2 ' t - 2
A  A  $

We calculate the values of At and At by substituting in the

estimate of n2 obtained from the probit estimation process,

Equation (2.3). An argument can be made that the estimate of 

cri2 obtained this way may not be effcient since we do not
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utilize the estimated structural parameters. In this 
section, we introduce an alternative approach to the 

traditional practice of estimating the components of the 

covariance matrix and use the Monte Carlo experiments to 
evaluate its performance.

Referring to Section 3.3.1, we show how to calculate 

the reduced form parameters given the structural parameters. 
Consequently, by using the estimated structural parameters 

we can derive the reduced form parameters which can be used 
in the estimation of the components of the covariance 
matrix. The benefit of this approach is that additional 
information concerning the structural parameters are 
permitted into the estimation process. Consider the equation

E yt, |X,dj = xnx + 5xd + cri2p d  + x*(l - d) + yx

Let denote the derived reduced form parameters as
A  A  A
n » rn , n ]l -1D' -2D

AFurthermore, let Sx denote the estimate of 5x. Substituting
A  A«5x and II into Equation (3.2), we get

E |"y IX,dl = XII + X(IT - IT ) + 5 d + (5 - 5 )d[_-M 1 ' -J -ID V-1 -ID 1- ' 1 1 -

[A  A „  "1 AAd + \ (1 - d) + vx

= xnlD + std + <ri2 p d  + T (1 -  d)]

+ [x <?, - L >  + <S1 - + Yt] -

By rearranging the known values to the left hand side we get 

E[yx|X,d] - xniD- 6xd = o*i2[xd + \*(l - d)] + y (3.24)
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where

■n = x<n - n D) + (si - s^d + v ,

\ = f(x'tL)/F(KL> and
a* = -a f (x7n )/F(-x7n ).t t v t-2D"  ' t - 2D
The alternative estimation technique of the parameter 

cr is the method that applies least sqaures to Equation 

(3.24). Let T) be the vector of residuals obtained from the 
application of least squares to Equation (3.24). We estimate 

the parameter cr* from the relationship

t=i L t =i J

We estimate qfc and sfc by
Ak A  A  A  p

= 1 +
and

A  A  A  *  A  * ps — 1 + (-x'n ) A - A ,t ' t - 2D t t '
respectively.

In Table 3.12, we compare the estimates of standard 

errors, and the estimates of the parameters cr and cr2 
obtained from the traditional approach to those obtained 

from the derived reduced form parameters approach using the 
original data. Both techniques give nearly identical 

estimates for the parameter cr* and slightly different 
estimates for the parameter cr̂ . The standard errors 

obtained from the two estimation techniques are quite 
similar except for the variable PROPLAW, as a result, we
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TABLE 3.12
The standard errors of the parameter estimates and the 

estimates of the components of the covaraince matrix.

Parameter estimates 
Covariance matrix 

traditional derived reduced
form parameters

O'12 -5.0689 -3.9177
2crl 51.0689 51.7824

Standard errors
First structural equation

traditional derive* 
form pi

Y*■* 2 4.1091 4.0618
ONE 7.8998 8.0240
GOVWAGE 2.0541 2.1934
PRIVUN 0.0974 0.1027
PROPLAW 2.6561 0.8909
EAG 0.1975 0.2133
SOU 2.1308 2.2343
SENT 11.5765 8.9890

Second structural equation
PUBUN 0.1561 0.1640
ONE 47.6064 46.2756
GOVWAGE 1.2822 1.3283
PRIVUN 0.1643 0.1644
CA1 0.2096 0.2255
COPEC 0.0269 0.0284
LOGMPRTY 12.2396 12.1893
NWLF 0.1986 0.2037
SENT 2.1972 1.8327
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find no major changes in level of statistical significance

of the parameter estimates.
In Table 3.13, we present the descriptive statistics

of the estimated values of a and erf obtained from the
1 2 1

Monte Carlo experiments via the traditional approach and the

derived reduced form parameters approach, both approaches
are applied to the traditional HECKMAN procedure. Therefore,

the estimates of cr and a2 obtained from the Monte Carlo12 1

experiment via the traditional approach are exactly 

identical to those obtained in the study of small sample

performances of the HECKMAN procedure.
Once again, in the process of performing Monte Carlo 

experiment on the derived reduced form parameters approach, 

when we find the Monte Carlo sample that has negative 

estimates of the asymptotic variances, we disregard that

particular sample and generate its replacement. We repeat 

this process until we get a thousand estimates of cri2 and
cr2. However, we discovered that some Monte Carlo samples

cause the right hand side of Equation (3.24) to become zero, 

hence rendering least squares inapplicable. We also delete 

such samples from the Monte Carlo experiment. All together, 

we have to generate 1498 Monte Carlo samples in the

experiment. Note that the number of Monte Carlo samples

generated is not the same as that of the traditional
approach which is equal to 1646. Thus, the two approaches of 
estimating the covariance matrix are able to use different 

sets of samples.
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TABLE 3.13
The descriptive statistics of the estimates of <r and 

cr2 obtained from the Monte Carlo experiments of the 
traditional and the derived reduced form parameters approach.

cr = 12

mean
std
skewness
kurtosis
max
min
median
mse

traditional

0.3230 
23.3971 
0.2486 
9.4950
177.4 

-130.9
0.9876 
547.9

-0.6336
derived reduced 
form parameters 

-74.7188 
2487 

-31.5951 
1001
305.2 

-78600 
4.5295 
6.18E6

mean
std
skewness
kurtosis
max
min
median
mse

traditional

370.8
981.0 

10.7419
175.1 
19810 
28.97
186.5 
1.06E6

cr = 51.5406
derived reduced 
form parameters 

2.25E4 
2.27E5 

18.5008 
380.3 
5.17E6 

31.7216 
282.7 
5.20E10
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From Table 3.14, we observe that the estimates obtained 
from using the derived reduced form parameters approach are 
by no means more accurate than those obtained from those 
obtained from the traditional approach. However, by using 

the covariance estimates obtained from the derived reduced 

form parameters less Monte Carlo samples are rejected which 

may lead to better estimates of the structural parameters.
In Table 3.15, we present the structural parameter 

estimates and their standard errors obtained from applying 
the HECKMAN procedure and its alternative on the original 
data using the derived reduced form parameters approach in 

estimating cr and <r\ The structural parameters used in 
deriving the reduced form parameter are from the HECKMAN 

procedure. The results in Table 3.15 are quite similar to 
those in Table 3.1 where the components of the covariance 

matrix are obtained via the traditional approach.

The Monte Carlo experiments using the estimates of <xi2 
and cr̂ obtained via the derived reduced form parameter 

approach in the process are also performed on the HECKGLS, 

AMEMIYA and RLS procedure; once more, the derived reduced 

form parameters are estimated by using the structural 
parameter estimates obtained through the HECKMAN procedure. 
We discover that a great deal of generated Monte Carlo 

samples have to be omitted since they yield negative 

estimates of the parameter variances. Moreover, the mean 

square errors of all parameter estimates are increased by
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TABLE 3.14
Bias, standard errors and mean square errors of the 

parameter estimates obtained through Monte Carlo 
experiments.

First structural equation 
(PUBUN)

traditional derived reduced 
form parameters

8.6067
(44.2635)
2033.30

4.3714
(27.8230)
793.20

ONE 9.6505 
(58.3161) 
3493.30

4.1659 
(37.7928) 
1445.60

GOVWAGE 0. 3897 
(2.8662) 
8.3669

0.1980 
(3.0157) 
9.1335

PRIVUN 0.0135 
(0.1333) 
0.0179

0.0067 
(0.1393) 
0.0195

PROPLAW -0.6291 
(4.0087) 
16.4654

-0.4164
(4.2892)
18.5704

EAG 0.0505 
(0.2666) 
0.0736

0.0372 
(0.3071) 
0.0957

SOU 0. 2996 
(2.7454) 
7.6268

0.2496 
(3.0022) 
9.0756

SENT -20.7786 
(116.700) 
1.4E04

-9.1241 
(75.5782) 
5795.4

Total 1.96E4 8071.1

The values in parentheses are the standard errors and 
the bold values are the mean square errors.



www.manaraa.com

81

TABLE 3.14(continue)

Bias, standard errors and mean square errors of the 
parameter estimates obtained through Monte Carlo 
experiments.

Second structural equation 
(SENT)

traditional derived reduced
form parameters

PUBUN 0.0959 0.0032
(2.9997) (0.9124)
9.0071 0.8325

ONE -18.9980 -3.3335
(490.600) (55.8953)
2.4E05 3135.40

GOVWAGE -0.1524 -0.3825
(2.5906) (4.7641)
6.7345 22.8430

PRIVUN -0.0285 -0.0069
(1.0295) (0.4198)
1.0607 0.1763

CA1 0.0683 0.0126
(1.8425) (0.5047)
3.3996 0.2549

COPEC -0.0360 -0.0048
(0.9631) (0.1332)
0.9288 0.0178

LOGMPRTY 3.3890 0.6892
(86.2970) (12.6449)
7458.7 160. 4

NWLF -0.0197 -0.0047
(0.5178) (0.3327)
0.2685 0.1107

SENT 6.3336 2.4245
(136.700) (43.0134)
1.9E04 1856

Total 2.64E4 5176
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TABLE 3.15
The coefficient estimates of the selected estimation

process.

First structural equation 
(PUBUN)

HECKMAN HECKGLS AMEMIYA RLS

Y i -2.3830 6.2804 6.9705 6.1254
( V (4.0618) (7.7579) (5.6104) (5.5335)
ONE 39.2069 54.3126 57.2841 49.7700
(fin ) (8.0240) (14.5804) (10.8814) (10.1303)
GOVWAGE -11.4664 -11.4714 -11.9181 -10.8677

(2.1934) (2.3614) (1.9606) (1.9182)
PRIVUN 0.2170 0.3402 0.3928 0.5126
(013) (0.1027) (0.1642) (0.1278) (0.1194)
PROPLAW 14.9908 22.3594 22.8074 24.5160

<*14> (0.8909) (6.6273) (5.2942) (5.2528)
EAG -0.8328 -0.7388 -0.7129 -0.3478
(*15> (0.2133) (0.2643) (0.1800) (0.1186)
SOU -7.0743 -8.2288 -8.1551 -5.8438

(2.2343) (2.5701) (2.0843) (1.8550)
SENT 13.3007 -28.1923 -36.1480 -34.8884
(«,) (8.9890) (34.5827) (25.9471) (25.8097)
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TABLE 3.15(continue)
The coefficient estimates of the selected estimation

process.

Second structural equation 
(SENT)

HECKMAN HECKGLS AMEMIYA RLS
PUBUN 0.2348 0.2751 0.0259 0.0609
U 2) (0.1640) (0.0132) (0.0129) (0.0205)
ONE 16.8075 1.7121 1.7064 6.1455
(*21> (46.2756) (2.7913) (2.8438) (3.6117)
GOVWAGE 3.0002 0.4508 0.4523 0.8799
(022) (1.3283) (0.1853) (0.1775) (0.3138)
PRIVUN -0.0813 -0.0101 -0.0123 -0.0434

<*23> (0.1644) (0.0109) (0.0102) (0.0132)
CA1 -0.2878 -0.0578 -0.0568 -0.0958
<e„) (0.2255) (0.0207) (0.0199) (0.0243)
COPEC 0.0260 0.0024 0.0028 0.0172

TO CO 00 (0.0284) (0.0034) (0.0031) (0.0038)
LOGMPRTY -6.5865 -1.1308 -1.1060 -2.4701
(029> (12.1893) (0.7761) (0.7727) (0.8865)
NWLF 0.1425 0.0200 0.0165 0.0326

(0.2037) (0.0139) (0.0135) (0.0072)
SENT -2.3558 3.2666 3.2955 2.1233
(5 ) 
' 2

(1.8327) (0.3367) (0.3269) (0.7645)

-r s2 1 -3.1230 0.7752 0.9362 2.1247

Note: The values in parentheses are the asymptotic standard 
errors.
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many fold compared to those presented in Table 3.4. As a
consequence, the estimates of <ri2 and cr2 obtained via the
derived reduced form parameters approach should not be used
in the HECKGLS, AMEMIYA and RLS procedure since they
increase the variability. The reason is that the estimates

of o' and cr2 obtained via the derived reduced form 12 1

parameters approach are not very accurate in estimating the

actual values of o' and cr2.12 1

It is possible to use the reduced form parameters 
derived from the structural parameter estimates of the 
HECKMAN procedure as the initial starting values to

A  A  2calculate cr and ô  in the derived reduced form parameters 

approach. This can be implemented in the HECKGLS, AMEMIYA 
and RLS procedure. The reduced form parameters are updated

by using the recently obtained structural parameter
a 2estimates and then the estimates of o' and a are12 1

re-calculated. We proceed with this iterative method until 

certain convergency criteria are met. Possible problems of 

estimating the structural parameters by this iterative 
method are that there are no guaranties that convergence 

exists and, even when there is convergence, maybe not all 

estimates of the variances are positive. Furthermore, using 

Monte Carlo experiment to find the small sample properties 

of such estimation technique is time consuming.
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3.4 CONCLUSIONS.
1. We have introduced three alternatives estimation 

techniques (HECKGLS, AMEMIYA and RLS) to the traditional 
HECKMAN procedure. The alternative estimation techniques all 
utilize generalized least squares methods These alternatives 
yield estimation results that are quite alike. With the 

implementation of the iterative routine, we have shown that 
these alternatives estimation techniques have a tendency to 

produce estimates that converge to the same values. However, 

the results obtained are very distinctive from those of the 

HECKMAN procedure.
2. We have used Monte Carlo experiments to study the 

small sample properties of the HECKMAN procedure and its 

alternatives. In the course of the experiments, we have 
discovered that not all Monte Carlo samples generated can be 
used for they do not yield positive estimates of variances. 

From the Monte Carlo experiments, we have suggested the 
AMEMIYA procedure as an alternative to the traditional 

HECKMAN procedure.

3. We have calculated the theoretical standard errors 
of the estimates obtained from the traditional HECKMAN 
procedure and its alternatives, namely the HECKGLS, AMEMIYA 

and RLS procedure. We have found that the small samples 
properties reflected by the Monte Carlo experiments are 
vastly different from their theoretical counterparts.

4. We have introduced an alternative approach in 
estimating the covariance matrix called the derived reduced
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form parameters approach. The estimates of the components of 
the covariance matrix obtained from the derived reduced form 
parameters are by no means more accurate than those obtained 
from the traditional approach. However, it provides the 
opportunity of including iterative routines in the 
estimation of the structural parameters as well as the 
covariance matrix of the HECKGLS, AMEMIYA and RLS procedure.

In this Chapter, we have examined several aspects of 

the estimations of the simultaneous generalized probit model 

as well as introduced several alternative estimation 
procedures. The matter is not yet settled and additional 
investigations are needed. Furthermore, new estimation 
techniques could be developed. One plausible technique is 

the hybrid between the HECKMAN procedure and the AMEMIYA
Aprocedure. Recall that Heckman uses F(XII2) to replace the 

variable d in order to eliminate its correlation with the 

disturbance terms while Amemiya suggests the use of 

instrumental variables approach or pre-multiplying the 
vector d by the matrix of explanatory variables X. The

A
combination of both methods is to use a proxy for d called d 

where

d =t
r i  i f  (x n 2)>o

0 elsewhere

The variable d can also be pre-multiplied by the matrix of 

explanatory variables X to further eliminate the correlation 
with the disturbances.
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CHAPTER 4 
EQUITY ESTIMATOR

4.1 INTRODUCTION
In this chapter, we will discuss the biased estimator 

developed by Krishnamurati and Rangaswamy (1987) hereinafter 

denoted KR . The estimator is called the "equity estimator." 

KR claim that the equity estimator is superior to the simple 

ridge estimator on the basis of mean square error 
comparisons in Monte Carlo experiments. Consequently, the 

equity estimator may be useful in the presence of 
multicollinearity. We are going to study the various 
properties of the equity estimator and compare them to the 
ordinary least squares within the context of multicollinear 
data. First, we define multicollinearity and discuss its 

effects on ordinary least squares in Section 4.2. We study 

the use of biased estimators as alternatives to least 

squares in the presence of multicollinearity in Section 4.3. 
The traditional biased estimators that we are going to 

consider are the ridge regression estimator and a Stein-like 

principal components estimator introduced in Section 4.4.

Finally, in Section 4.5 we introduce the equity 

estimator and examine its characteristics. The small sample 
properties of ridge regression estimator, principal 

components estimator and equity estimator can be compared 
via a Monte Carlo experiment which will be presented in the 

following chapter.

87
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4.2 MULTICOLLINEARITY AND ITS EFFECTS ON ORDINARY LEAST 
SQUARES

Consider the model

y = Xj3 + e (4.1)
where y is a (Txl) vector of observations on a dependent 

variable, X is a fixed (TxK) full rank matrix of 
observations on exogenous variables, g is a (Kxl) vector of 

unknown parameters and e is a (Txl) vector of disturbance 
terms which are identically and independently distributed as 

N(0,cr2) .
Exact multicollinearity is present when at least one of 

the explanatory variables is a linear combination of the 
remaining explanatory variables. The matrix X is not of full 
column rank and (X'X)-1 does not exist. Furthermore, for 
each exact linear dependence among the columns of X one of 

the eigenvalues of X'X is zero. In practice, exact 

multicollinearity is rare except for the case where too many 

dummy variables are included or the sample size T<K, and we 
exclude the possibility of its ocurrence.

Let the columns of X matrix be denoted by xt, i =

1,2,...,K. Then near exact multicollinearity exists if

c x + c x + . . . + c x = 0  (4.2)1-1 2 - 2  K - K  -  V '

Alternatively, near exact multicollinearity exists if 
at least one of the eigenvalues of X'X has value 

approximately equal to zero.
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The effect of multicollinearity on the least squares 
estimator is revealed through a transformation of the LS 
estimator. Let P be the matrix whose columns are the 

orthonormal characteristic vectors of (X'X) corresponding to 
the ordered characteristic roots of (X'X) which are 

contained in the diagonal matrix A = diag(A ,...,A ), such 
that A s  A £ . . .s a . Let Q be the matrix consisted of the1 2  K
orthonormal characteristic roots of (XX') associated with 
the K nonzero eigenvalues of (XX') . Muticollinearity exists 
when one or more of the eigenvalues of (X'X) are near zero.

The least squares (LS) estimator is
-l

b = (X'X) X'y (4.3)

The covariance matrix of b is

Cov(b) = a2 (X'X) -1= cr2PA' XP'

= 'Vjlpip j (4*4)j = i

The variance of a particular b̂  can be written as

Var(bj) =

2 2 2
P J1 P j2 P JK
  +   + ... + ----
A A A1 2  K.

cr2 (4.5)

The effects of multicollinearity are clearly observed 

from Equation (4.5). Small eigenvalues tend to increase the 

variation of b̂ . Nevertheless, it is not necessary that 
small eigenvalues will result in great variations in all of
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the estimated coefficients since the , i and j =
1,2,...,K, are weights assigned to each component of the
variance as indicated in equation (4.5). Even though some 
values of the eigenvalues could be extremely small, the
variation of a particular coefficient may not be large if

• • • 2 •the corresponding weight is small or cr is small.

Multicollinearity results in the large sampling

variances of the estimated coefficients and the values of 
the coefficients are often too large in absolute values with 
some having wrong expected signs. Consequently, we observe 
the following: " First, the direct result is that the

separate effects of explanatory variables involved may not 
be estimated precisely. Second, given the above,

coefficients may not appear significantly different from 
zero and may be excluded from the analysis, not because the 
associated variable has no effect but because the sample is 

inadequate to isolate it. This situation may occur despite 

possibly high R2 or F values, indicating a model that fits 

the data well. Third, estimated coefficients may be 
sensitive to the addition or deletion of a few observations 

or the deletion of an apparently insignificant 
variable."(Judge ,et al., 1982, p.610)

4.3 BIASED ESTIMATION
Consider the model in Equation (4.1)

y = Xg + e
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where X is a (TxK) fixed matrix of rank K^T and e ~ 

N(0,tr2IK) . Let's suppose that the matrix X and the vector y 
are standardized by subtracting variable means and dividing 
by variable standard deviations.

The least squares estimator b = (X'X) -1X'y has

covariance matrix <x2(X'X)-1; furthermore, it is unbiased 

since E[b] = g. Out of the class of unbiased estimators, the 

least squares estimator is best, where best implies minimum 

variance.
We have shown that in the presence of multicollinearity 

some elements of b may be variable and imprecisely 

estimated. Consequently, we consider biased estimators of g, 
<5, that may have smaller variation than b, and thus may 

provide estimates closer to the true parameter values than 

the LS estimator.
As a basis for evaluating estimator performance, we 

consider the weighted squared error loss measure

L(g,S,D) = (8 - g)'D(S - g) (4.6)

where D is a positive definite and symmetric matrix. The 
sampling performance of 8 is evaluated by its risk function

R(g,5,D) = e [(5 - g) ' D (<5 - g)j (4.7)

The most common choices for the weight matrix D in 
(4.6) are D = I, which defines the risk of estimation to be 
the mean square error, and D = X'X which corresponds to mean 
square error of in-sample prediction.
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For D = I, Equation(4.7) is written as

R(g,8 ,I) = e[(S - g)' (5 - g)J

Let us rewrite (5 - g) as

(S - g) = (8 - E (5) ) + (E (5) - g)

Note that the expression (E(S) - g) is the bias vector.

Consequently, the mean square error loss can be expressed as

R(g,S,I) = e[(S - E (8) ) + (E (8) - g)]' [-]

= e[(S - E (8) )' (8 - E(S))J

+ 2 e[(S - E (8) ) ' (8 - E(S))J

+ e [(E(S) - g)'(E(S) - g)] (4.8)

The expression (8 - E(S)) has zero mean and thus its 
expectation is a null vector.

Therefore, (4.8) can be rewritten as

R(g,S,I) = e[(S - E (8) )' (8 - E(S))J

+ e [(E(S) - g)' (E(S) - g)J

= tr(Cov(S)) + tr(bias(S))(bias(S))'

(4.9)

For 8 = b, R(g,b,I) = tr(Cov(b)) since b is unbiased.

The biased estimator 8 is superior to the least squares 
estimator when [tr(Cov(b)) - tr(Cov(S))] > 
tr (bias (8)) (bias (8))' . That is the increase of risk due to
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biasness is less than the decrease of risk due to reduced 
variability. In the following sections we consider the 

alternative biased estimation rules that may yield lower 
estimator risk than the LS estimator in the presence of 

multicollinearity.

4.4 RIDGE REGRESSION ESTIMATOR
Consider the model in Equation (4.1)

y = Xg + e

where X is a fixed (TxK) matrix of rank KsT and e ~
N (0,cr2I) . The matrix X and the vector y are standardized by 

subtracting variable means and dividing by variable standard 

deviation.
The generalized ridge estimator introduced by Hoerl and 

Kennard (1970 a,b) is

g*(K) = [x'X + PKP'j X'y (4.10)

where P is previously defined and K = diag (k , ...,k),1 R
k^O; i = 1, 2, .. . ,K.

If PKP' = kIR , k^O, then /3*(K) is reduced to the
simple ridge estimator.

(3* (k) = |x'X + klj X'y (4.11)

Given the risk function described in Equation (4.7),

with D = I , the resulting risk is called MSE (mean squared 
error) in much statistical literature. Hoerl and Kennard 
(1970a) found that there always exists a k>0 such that the
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ridge estimator has smaller risk than the least squares 
estimator.

Theobald (1974), using the generalized risk function in
A O

Equation (4.7), showed that a sufficient condition for g (k) 
to have a smaller risk than the least squares estimator is 

that k < 2cr2/(g'g).
The sufficient conditions for g*(k) to have smaller 

risk than least square provided in Hoerl and Kennard (197 0a) 

and Theobald (1974) are dependent on the unknown parameters 
g and or2. Consequently, they are not empirically applicable. 

The constant k has to be estimated using the data.
Therefore, if the estimated k depends on y it is stochastic,
and the properties of ridge regression are no longer valid. 

Hoerl, Kennard and Baldwin (1975) suggested a k value

of
A 2K a

k (y) =------  (4.12)
b'b

where k(y) , a function of the data, is the sample analogue 
of Kcr2/ (g'g) and cr2=(y-Xb)' (y-Xb)/(T-K) . Lawless and Wang

(1976) and Dempster, Schatzoff and Wermuth (1977) proposed 

alternatives to k(y) in Equation (4.12). Monte Carlo
experiments are performed for each of the estimation rules 

to show that the ridge estimator may have smaller mean 

square error than the least squares estimator.
Several studies examined the risk properties of these 

simple ridge estimators and determined the conditions under 

which they have lower risk than the least squares estimator.
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Sidik (1975) showed that it was possible to reduce the 

MSE of the simple ridge estimator by slightly increasing k. 
Deegan (1975), using a bias minimization technique, showed a 
way to find a probable upper bound for k. Farebrother
(1976), Lee and Trivedi (1982) provided additional insights 

on the conditions for k such that the simple ridge estimator 

will have smaller MSE risk than the least squares rule.

Thisted (1977, 1978a) and Casella (1977) exhibited

conditions under which g*(k(y)), for several choices of 
estimation rules for k(y), is minimax. Furthermore, they 
also showed that the minimaxity of the simple ridge

estimator is dependent on the eigenvalues of X'X. For K a 4, 

ridge regression is minimax if the eigenvalues are all 

equal. Thisted (1978b) studied the minimax condition for
generalized ridge of the form in equation (4.10) and 

concluded that simple ridge estimators cannot maintain the 
necessary condition for minimaxity. Ullah, Vinod and 

Kadiyala (1978) presented alternatives choices for k that 

improve the performance of the simple ridge estimator. For 

collection of articles on ridge regression and its 

application during 1962-79, see Hoerl and Kennard (1981).

Hoerl and Kennard (1970a) also considered a generalized 
ridge estimator of the form [X'X + kB]-1X'y where B is a
symmetric, positive definite matrix. This form can be 

rewritten as [I + kC]-1b, where C = (X'X)-1B. Strawderman

(1978) presented a ridge estimator of this form described as
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§(fe,s) = [I + k(y)C]_1b (4.13)

where s = (y - Xfe)' (y - Xb) . The purpose of constructing 
this alternative was to find estimator of this form that are 

minimax and have the same properties as usual ridge 

regression.
Given the risk function in Equation (4.7), K^3, and the 

usual assumptions of the classical normal linear regression, 

Strawderman showed that the ridge rule

S(b,s) =
asD-1X'X -,"1

I +
b'X'Xb + gs +h

(4.14)

2 (K-2)is minimax, where 0 s a s  i —
(T-K+2) A [D_1X'X]' max

and h £ 0, g 2 2K/(T-K+2). A^JD^X'X] is the largest
eigenvalue of D_1X'X.

4.5 STEIN-LIKE PRINCIPAL COMPONENTS ESTIMATOR

Marquardt (1970) studied the properties of principal 

components estimator in the form of generalized inverse 

estimation technique with some eigenvalues being zero. He 

showed that the resulting estimator is a linear 
transformation of the least squares estimator and the 

biasedness of the estimator depends on how close to zero are 

some of the eigenvalues. Marquardt also developed a 

condition under which the generalized inverse estimator has 

less mean square error risk than that of least squares rule. 

Farebrother (1972) explored the properties of the principal
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components estimator under the minimum weighted estimated 
mean square error criteria. He suggested a possible solution 

to the problem by calculating the mean square error for all 
of the possible combinations of components to be deleted. In 

the case that K is very large, this method is impractical.
Johnson, Reimer and Rothrock (1973) formulated the 

principal components estimator in the form of restricted 

least squares estimator. Consequently, they showed that the 

restrictions implied by the principal components estimator 

can be tested before being imposed in the estimation 
process. Greenberg (1975) discussed the trade off between 

reduced variance and increased biasedness when the 
components with small eigenvalues are dropped in principal 

components estimation. He suggested that the components to 

be dropped or the implied restrictions should be chosen by 
examining the eigenvalues and their associated eigenvectors. 

The test for the statistical significance of the 

restrictions can also be used in choosing the set of 
restrictions to be imposed. Mittelhammer and Baritelle

(1977) studied two criteria for selecting the components to 

be deleted and their small sample properties. The first 

criteria considered is to delete the components associated 

with small eigenvalues. The second criteria is to test the 

statistical significance of the components before deleting. 
The small sample properties of the criteria are obtained 
through Monte Carlo experiment. They found that the 

performance of the principal components estimator using the
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two criteria of components selection decreases as the data 

become more highly collinear. Nevertheless, the principal 
components estimator using the two criteria has lower mean 
square error than least squares estimator under certain 

conditions.
Fomby and Hill (1987) suggested some alternative 

criteria of choosing the components to be deleted. They 

rejected Pidot's criterion of deleting a component when its 

associated eigenvalue is less than the average root or 1 
when the matrix of the explanatory variables is in 

correlation form. Instead the components to be deleted 

should be selected on the basis of the variance reduction 
potential which can be obtained by decomposing the 

covariance matrix of the least squares estimator. Another 
alternative is to test the restrictions implied by the 

principal components estimator. They also suggested the use 

of a Stein-like estimator to combine the non-sample 

information or restrictions with the sample information. 

Stein-like estimator is known to dominate least squares 

under squared error loss if certain conditions are met.

Consider the model in Equation (4.1)

y = X§ + e

where X is a fixed (TxK) matrix of rank KsT and e ~ 
N (0,<t2I) . The matrix X and the vector y are standardized by 

subtracting variable means and dividing by variable standard 

deviations. Suppose we have exact nonsample information
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relative to a particular parameter or linear combination of 
parameters that may be stated as

R§ = r (4.15)

where r is a (Jxl) vector of known elements and R is a known 

(JxK) prior information design matrix of rank J*K. The 

restricted least squares estimator is

b - (X'X)"^' [R(X'X)~V ]-1 (Rb - r) (4.16)

In 1961, James and Stein exhibited a non-linear 
estimator that combined nonsample information with sample 

information and dominated the least squares-maximum 

likelihood estimator, and thus demonstrated its 

inadmissibility. The James-Stein estimator may be written in 

general form as

§ = 1 - as
(Rb - r)' [R(X'X)"1R/]_1 (Rb - r)

(b - b ) + b (4

The estimator g has risk less than or equal to that of 

least squares if J&3 and

0 < a <
T-K+2

tr{ [R(X'X) ~*R' ]"1R(X/X)~1D(X/X)~1R/ } _ 2
V

where 7? is the largest eigenvalue of the expression in the 

brackets { ), with s given in (4.13).
The expression in Equation (4.17) can also be written

as
c

1 --
u

(b - b ) + b

. 17)
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c
1 —  

u
. cb + b - (4.18)

U

(Rb - £)'[R(X'X)_1R/]"1(Rb - £)
where u = --------------    is the likelihoodA 2 J<T
ratio test statistic on the restrictions Rg = r and c = 

a(T-K)/J. The random variable u has a central F distribution 
with J and (T-K) degree of freedom if the restrictions are 

correct.
If the restrictions are strongly supported by the data,

. *  •u will be small and the weight assigned to b will be large. 

If the restrictions are not supported by the data, u will be 
large and more weight will be assigned to b.

From Equation (4.18), if c > u, then g* is no longer a 

convex combination of b and b*. For a specific case where R 

= I  and r = 0, the estimation rule in Equation (4.18)

changes the sign of the least squares estimator when c > u. 

As a consequence, the rule in Equation (4.18) ought not to 

be used. As it turns out

g + = [ 1 - (c/u)j+ (b - b*) + b* (4.19)

wherej^ 1 - (c/u)j+ = max £l - (c/u),oJ, uniformly improves

on g* which is shown in Adkins and Hill (1989) . Therefore,
•  ^  # » *

g  is inadmissible, g  is called positive S t e m  rule.

The Stein-like rule (4.19) can be applied to the
principal components estimator, since the principal
components estimator is a form of restricted least squares.
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Again, consider the Equation (4.1)

Y = X§ + e

We can transform X into the matrix of principal components 

by post multiplying X by P where P is previously defined. 

That is

y = XPP'g + e

= Z0 + e (4.20)

The i-th column of Z, z , is equal to Xpt where is 

the i-th column of P. zi has the property that

z'z = p'X'Xp = A — l— i ^i “ i i

Suppose the columns of X obey J linear independent

restrictions so that X has rank K-J and consequently *K_J+1=
... = Ar = 0. Therefore, we can partition the matrix Z into
two parts, [ZjZ2], according to whether the associated

eigenvalues are zero or not. Since the last J eigenvalues

are zero, the corresponding principal components are null
vectors. Thus, we can rewrite Equation(4.15) as

Y = Z0 + e

+ e

= Z 9 + e (4.21)1-1 —  v

We can see that Z is deleted from the model which is2
equivalent to specifying §2 = 0. From Equation(4.15) , we 
have

tZi Z2J
G—l 
0
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0 = P'g

r © i r p'i—i

e p'—2 2

Thus, specifying §2 = 0 implies restricting P'g = 0. 
Applying Stein-like rule to the principal components

Aestimator, denoted by gpc, is equivalent to applying 
Stein-like rule to Equation (4.1) with the restrictions that 

p'2e = o.

4.6 THE EQUITY ESTIMATOR
Krishanmurati and Rangaswamy (1987) suggest an 

alternative to traditional biased estimators called the 

equity estimator. The name equity comes from the suggestion 
that "... when no specific information is available about 

the relative effects, each control variable must be treated 

in an equitable manner in determining its relative impact on 
the response variable" (Rangaswamy et al., 1985, p.18). KR 

(1987) perform Monte Carlo experiments to evaluate the small 

sample properties of the equity estimator. They suggest that 

the equity estimator should be used when the R-square of the 
OLS is less than 0.7. Rangaswamy and Krishamurati (1991) use 

Jackknife and bootstrap resampling techniques to study the 
small sample property of the equity estimator. They claim 

that the equity estimator ought to be used for solving the 

problem of resource allocation . Moreover, they say that the
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equity estimator gives estimates with more 'valid' signs. 
However, they admit that the equity estimator performs 
poorly when evaluated by the prediction mean square error 

criterion.
The development of the equity estimator is divided into 

several steps which we describe below. Following Rangaswamy 
et al.(1985) and Krishnamurati and Rangaswamy (1987), the 

matrix X and the vector y are standardized by subtracting 
variable means and dividing by variable standard deviations. 

Step 1. Find an orthonormal matrix Z such that it is 
maximally correlated with X, which is equivalent to 

maximizing the correlation between X and Z. This may be 

stated as

The solution is given by Z = QP' where P is previously 

defined and Q is the matrix of orthonormal eigenvectors of 

(XX').
Step 2. Find the relationship between Z and y which is

K
max

subject to Z'Z = IR

K

achieved by regressing y against Z. We get

2 = (Z'ZJ^Z'y (4.23)
A

Step 3. Scale the 2j's in order to obtain coefficients in 
terms of the X variables by constructing
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w - T + ... + T J ^  = XJ2 (4.24)
A

Then regress y against w to get a scaling constant v.

v - (w'w) -1w'y (4.25)

The equity estimator is expressed as

§E * V'i (4.26)

KR do not show any statistical properties of the equity 

estimator. They rely on Monte Carlo experiments to examine 

the performances of the equity estimator. They even neglect 
to provide adequate intuition about the equity estimator. 

Therefore, we are going to investigate each step of the 

development of the equity estimator.
Step 1. Consider the matrix X which can be expressed as

X = QA1/ZP' (4.27)

by singular matrix decomposition, where the matrices P and Q 
are as previously defined. Near exact multicollinearity

exists if one or more of the eigenvalues of X'X has value 

approximately equal to zero. The matrix Z eliminates the
problem of near exact multicollinearity by suppresing the
1 /2 wA component from Equation (4.27). That is Z = QIrP', and
1/2A is replaced by an identity matrix. In effect, the

variability of the regressors is ignored, and made equal, by 

transforming the data to be orthonormal. That is Z = QP' 
Since Q = XPA"1/2 from (4.27)

Z = XPA‘1/2P'
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- X(X'X)'1/2 (4.28)

where PA-1/2P' = (X'X) -1/2 is a symmetric positive definite
matrix such that

(X'X)-1/2(X'X)-1/2= (X'X)-1,

(X'X)1/2 = pa1/ 2p' ,

(X'X)1/2- (X'X)-1/2= I, 

and (X'X)1/2(X'X)1/2 = (X'X) .
Consequently,

Z'Z = (X'X)-1/2X'X(X'X)"1/2 = IR.
Another way to view the matrix Z is from a graphical 

perspective. Consider equation (4.20)

y = Z0 + e

We know that zy has the property that z_i' z t = Ai. Suppose 
that the matrix X has the vectors a ,...,3  ̂ as the unit 
basis vectors in the original coordinate system. We then 

transform the matrix X into a new coordinate system with 

basis vectors Ex> • • • /P*» where P = which are in
the direction of the axes of the data ellipsoid. Fomby et 

al. (1984) show that " can be represented geometrically
as the sum of squares of the projections of the T points x , 

... ,x onto the n axes. Thus the characteristic roots ofT J

X'X measure the variability of the data in the direction of

the axes of the ellipsoid" (p.290).

The i-th column of the matrix Z , , when expressed in
the term of the new basis vectors p ^ s  is equal to the i-th

• « -1/2 . column of the matrix Z, weighted by . This
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rescaling effort results in the variability of the data with 
respect to the basis vectors ja being equal in every 

direction, with the direction associated with the most 
variability being the one that is scaled towards the origin

M  —  1/2 0*  mmthe most. That is ẑ  = , therefore z ^ z ^  z.l'z,i'\i -

W  - 1*
Thus, the first step of equity estimation amounts to a 

re-scaling of the original data to equal variability in all 

directions of a transformed observation space.

Step 2.
Consider the equation

y = Xg + e

= X(X/X)“1/2(X#X)1/2g + e 

= Ztj + e (4.29)

where j = (X'X)1/2g
A

From equation (4.29), we see that 3 is the maximum

likelihood estimator of j, a nonsingular transformation of
^ 1/2 A the parameter vector of interest g. Since 2 = (X'X) b, tj ~

P A  1 /P A 2N(7), a I ) . Thus E(a) = (X'X)1 g and Cov(jj) = cr I . As an
Aestimator of g, 3 is biased and inconsistent unless (X'X) =

AIR. The estimator 2 shifts the effects of multicollinearity 

from the estimator covariance matrix to its bias. 

Specifically,

R[2,g,D=I] = tr(Cov(2)) + £ bias2(t?|
1 = 1
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= <T2K + g' j^'X)1'2-!^' • £(X'X)1/2 -IKJg (4.30)

where <r2K is the variance component of risk and the second 

term is the squared bias component. The bias component can 

be re-expressed as

|bias2(ii) = g' [(X'X)1/2- ij'- £(X'X)1/2- IRJg

- g' (X'X)1/2[̂ Ik- (X'X) _1/2J [lK- (X'X) "1/2J (X'X)1/2g

- 3#[v (x 'x )"1/2] 23

but - (X'X)“1/2J = p|lR - A'1/2j P', so

£  bias 2 (T?t) * §e (diag[ (1-X~1/2)2,..., (1 -;T1/2)2]) 0 £
K

I1 = 1
- 02e(1-^1/2)2 + ... + (1-X~1/2)2 (4.31a)

where 0£ = P'tj = P'(X'X)1/2g = P'(PA1/2P')g = A1/2P'g = A1/20,

(4.31b)

and 9 is the vector of parameters from the principal
A

components model. Consequently, the total squared bias of 7j 

as an estimator of g is dependent not only on g but also the 
characteristic roots and vectors of (X'X) that characterize 

the nature of the multicoilinearity in the data.

By rescaling the basis vectors Ej's, we can write the 

linear statistical model in terms of 0£, as

Y = Xg + e 

= XPP'g + e
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ze + e

= ZA_1/2A 1/20 + e

ze + e-E —

XPA'1/2A 1/2P'g + g  (4.32a)

and
A  A  A  1 Ae = (z'z) ‘z'y

= Z'y = A"l/2Z'y (4.32b)

A  -1/2 A  ASince Z = ZA and Z'Z — I
From Equation (4.31b) and (4.32), we can see that the 

estimate e is a decreasing function of Aj. We have shown 

that Var(T) ) = <r2; it follows that Var(0,J = cr2 also. The1 it
least squares estimator of 0, 0 = (Z/Z)“1Z'y = A^Z'y, has

covariance matrix Cov(0) = a^A'1 or Var(0t) = cr2/\ .

Step 3 . KR do not give any explanation of the meaning of the 

vector w in (4.24). They use it as a vehicle to obtain the
A

scaling constant v , which is simply the ratio of the 

correlations between (X,y) and (Z,y). That is

A
V  =

y'X(X'X)"1/2X'y

y'XX'y

y'X Z'y 

y'X X'y
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y'X* 22
- --------  (4.33)

y'XX'y

Since,

w - X2

« X(X'X) 1/2b 

= X(X'X)"1/2X'y 

= X Z'y

Therefore,

(w'w) = y'X(X'X)-1/2X'X(X'X)"1/2X'y;

= y'XX'y

and

w'y = y'X(X'X) ~1/2X'y 

= y'ZX'y
A  A

From equation (4.33) we can see that v  is dependent on tj.
A

Consequently, the scaling variable v is random and depends 

on the eigenvalues of X'X which characterize the structure 

of multicollinearity.
AThe scalar v can also be written as

A  A  A  I A
v  = ri'x'y/2i X'XTJ 

_ fe' (X'X) 1/2x'y
b' (X'X)1/2X'X(X'X)1/2b
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&  (x'x)3/2fe
b' (X'X)2b

(4.34)

The vector w  can be viewed as the predicted values of y
A

using the estimator 3 . That is

As a consequence,

Y'Y

If y  = y  = X ■ 7), then v  = 1 which happens when X'X = IR. 

Following Rao(1973,p. 74)
A  A

sup v  = d , inf v  = d 
b 1 fe

where d £ d a  .. .a d are the roots of1 2  K

I (X'X)3/2- d(X'X)2| = I (X'X) 21 • I (X'X)-1/2-Xl| = 0

-1/3 . 1 / 0  1/2 AHence d = A and d = A . Consequently, (1/A ) s v1 K K 1 1
1/2 ^  # s (1/XR) . The scale factor v may substantially increase

A
or decrease the value of 3 .

The equity estimator is described as
A  A A

iE - •’a
A

The finite sample properties of gE are very difficult
A  A  A

to determine for v  is dependent on 3 . We have shown that 3 

is a biased and inconsistent estimator of §. The scaling
A  A

constant v does not change the direction of 3 . When a biased 

estimator is used, we hope that the increased biasedness is
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less than the reduction of the estimator variability. The 

estimator 3 will have less variability than b if cr^X'X)-1-
2  A  A

a  It is positive definite. When v  is used to scale tj, the
A Avalues of v < 1 will reduce the variability and v > 1 will 

increase its variability. Therefore, we cannot be certain 

that will have lower variability than b that more than

offsets its biasedness and results in less overall risk than

the LS estimator
If we assume that ^m(X'X/T) = Q is finite and 

nonsingular, then

PliS £e = PJiS ̂  pHS a
T3/2b' (X' X/T) 3/2b

= plim — ------- ------—  x
T b' (X'X/T) b

p ^ m  T 1/2 (X'X/T)1/2b

- 3 / 2
§'Q § - 1 / a

= — —   ' Q § 54 § (4*35)
r o  §

Therefore, gE is inconsistent for all § * 0 unless Q = I.

Several observations can be made about the equity 

estimator.
1.The sampling performance of the equity estimator is 

extremely sample specific. Its bias and mean square error 

depend of the values of the unknown parameter /3 and the 

design matrix X.
2. The Monte Carlo experiment in KR indicates that as 

the severity of multicollinearity increases, measured by the
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increase of the ratio of the largest to the smallest 
eigenvalues, the MSE risk (D = I) and in-sample prediction 

risk (D = X'X) of the equity estimator decrease.
3. The Monte Carlo experiment in KR also shows that for 

all values of a2, the model error, the equity estimator has 
in-sample prediction risk greater than or equal to that of 

the simple ridge estimator. But the MSE risk of the equity 

estimator is always less than that of the ridge estimator 

for all value of cr2. Consequently, if the risk of the equity 
estimator is plotted against the model error, the 

performance of the equity estimator relative to least 
squares and other alternative estimators depends on the 
choice of the weight matrix D. The equity estimator attempts 

to use additional information involving the eigenvalues of 

X'X to help in the estimation of the unknown parameters § 
when multicollinearity is present. However, the distribution 
and exact finite sample properties of the equity estimator 
are still unknown. Thus, the study about its small sample 

properties must rely on simulations. In chapter 5, we are 

going to investigate the small sample properties of the 

equity estimator and compare them to those of traditional 

biased estimators. Monte Carlo experiments will be employed 
which may help us to gain more knowledge about the 

properties of the equity estimator.
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THE SMALL SAMPLE PERFORMANCE OF THE EQUITY ESTIMATOR

AND ITS ALTERNATIVES

5.1 INTRODUCTION.
In this Chapter, we use Monte Carlo experiments to 

assess the small sample performance of the equity estimator 
and some of its alternatives. We compare the performances of 

the alternative estimation procedures using various squared 
error loss criteria. The plan of the Chapter is as follows: 

In Section 5.2, we discuss the price promotion model used in 
the study as a basis for the Monte Carlo experiments and 

define the data set. Afterwards, we perform collinearity 
diagnostics on the data in order to check the severity of 
the multicollinearity problem. In Section 5.3, we 

re-introduce the equity estimator and some of its 
alternatives, which include the least squares estimator, two 

Stein-like estimators and ridge regression. In Section 5.4, 

we describe the nature of the Monte Carlo experiments as 
well as the method used in constructing the values of the 

dependent variable. In addition, we report the findings of 

the Monte Carlo experiments.

5.2 PRICE PROMOTION MODEL.

5.2.1 PRICE PROMOTION MODEL.
A price promotion model is used as a basis for studying 

the small sample properties of the equity estimator and its

113
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alternatives. This particular model relates the unit sales 
of a target brand of a product to its own price, the prices 
of its competitors, price discounts and dummy variables for 
the types of advertising being used. The model is 

I n s  = a + a R + a d + a IIt 0 1 It 2 2 t 3 MAD It

+ a I + a I4 DISIt 5 DISMADlt

+ Y (j3 d + /3 IL 12 it 13 MADit1 =2,4

+ 6 1  + 6 1  )14 DISit 15 DISMADlt'

_L3
+ 
n =2
y u MN + e . (5.1)
L i n nt Iti=2

The variables are
S = unit sales of brand iit

Rit = regular price of brand i

P = actual price of brand i
d = (R - P )/R = price discount of brand iit v it i t "  it *

I = major ad only indicatorMADIt J  *

I = display only indicatorDISit 1

I = display and major ad indicatorDISMADlt J

MN = month effectnt

e = disturbance termsit

where i = 1 for target brand and i = 2,3 and 4 for

competitive brands. The analysis of the price promotion 

model is based on weekly data from a Nielson SCANTRACK11 
Major Market. The product class studied is canned tuna and 
the target brand (brand #1) and brand #2 are major brands. 

The data set contains 52 store-weeks of data for a chain 
store.
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5.2.2 COLLINEARITY DIAGNOSTICS.
We report the condition numbers for the actual data, 

mean centered data and centered and normalized to unit

length data in Table 5.1. The condition number associated 
with the eigenvalue Aj is defined as the square root of the 

ratio AyAj , j = 1,2,... ,K. Centering the data improves the 

conditioning of the regressors by changing the origin of the 
data ellipsoid. The uncentered data exhibits severe 
collinearity due to the fact that the means of the
explanatory variables are far from the origin. For further 

discussion about centering data see Belsley(1984) and

Hill(1987).
We reduce the problem of multicollinearity by 

centering and normalizing the data to unit length the data 
as shown by the condition numbers in the third column of 
Table 5.1. Multicollinearity appears not to be a problem 
when the data is centered and normalized to unit length. By 

scaling the data to unit length, we eliminate the
variability induced by the choices of units of measurement 

which in turn affect the measured degree of

multicollinearity.

5.3 THE EQUITY ESTIMATOR AND ITS ALTERNATIVES.
5.3.1 EQUITY ESTIMATOR.

In order to conform with KR(1987), we apply the equity 

estimator to the centered and normalized to unit length
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TABLE 5.1
The condition numbers for the untransformed and 

transformed data.

actual centered centered and normalized
1.000 1.000 1.000
2.961 1.037 1.249
3.056 1.105 1.277
3.201 1.388 1.341
4.088 1.589 1.382
4.579 1.783 1.545
5.134 1.873 1.600
5.394 1.965 1.689
5.659 2.000 1.714
5.761 2.025 1.791
5.849 2.032 1.832
5.854 2.080 1.865
5.991 2.166 1.982
6.239 2.406 2.148
6.932 2.690 2.390
7.571 2.787 2.505
8.118 3.342 2.665
9.642 3.582 3 .387

10.331 4.727 3.488
13.623 5.034 4.287
14.677 6.921 4.678
20.680 9.085 5.201
27.692 12.340 7.095
35.576 14.270 7.357
41.130 33.682 11.501
97.459 67.876 26.973

258.501
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data. Let x denote the mean of the explanatory variable xk k
and y denote the mean of the endogenous variable y. The 
variables x and y are centered and normalized to unitk

length by

and

*tck -

x4u - x^tk k

/ (5.2a)

*te =
yt - y (5.2b)
/ ^ ( y t-y)

where t = 1,2,...,T and k = 2,3,...,K.

Let and = [x. c2 1 . c3 '

...,x 1. We call the matrix (X'X) the correlation matrix. cK c c
of X abbreviated as r . The elements of the matrix r areXX XX

the coefficients of correlation among the exogenous 

variables excluding the intercept term. That is

r =XX

23 ’2K

3K (5.3)

where r is the coefficient of correlation between the u
variables x and x ? i and j = 2,3,... ,K. Note that r is a

1 J XX

symmetric square matrix with diagonal elements equal to 1.

Similarly, the vector (XJyc), denoted as rxy, is a 
(K-l) dimension vector with its elements being the 

coefficients of correlation between the endogenous variable 

y and the exogenous variable omitting the intercept term.
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Consequently, the equity estimator can be described as 

2 = v 7j = (Z'Z )_1Z'y-Ec c-c c c c-c

where

Z = X (X'X )c c c c
- 1/2

A -1 v = (w'w ) w'y-c-c -c-c

and

w = X 7)- c c-c

The estimate /9 is associated with the centered and-Ec
A

normalized variables. Therefore, we have to convert ££c back
A

into the original parameter space. Let ££ck be the k-th
A  Aelement of the vector £ , then £ can be transformed to-Ec -Eck.

the original parameter space by the relationship
S

£ = £Ek Eck (5.4)

where Sy and are the standard deviations of the dependent 
variable y and the regressor x. respectively.K

A  A  A  A

Let £ = [ £ , £ , . . . , £ ] ' .  We observe that the-EO E2 E3 EK
A

vector £eq does not contain the estimate for the intercept
A

term. We compute the intercept term denoted as ££1 by
A  — A  — A

£ = y - £ x - . . . - £  xEl 1  E2 2 E K  K
(5.5)

Finally, the equity estimator expressed in the 

original parameter space is

A

§E =
£El
A

£-EO
(5.6)
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5.3.2 THE ALTERNATIVES.
In this section, we present the biased estimator 

alternatives to the equity estimator. The estimators
considered are the least squares estimator, two Stein-like 

estimators and a ridge regression estimator.

1. Least squares.
The least squares estimator is

b = (X'X)’V y  . (5.7)

2. Stein-like principal component estimator or 

PC-Stein.
We elect to apply PC-Stein estimator to the mean 

centered data set due to the better conditioning of the

data. The mean centered data is written as

x = x , - x, (5.8a)tDk tic k ' '

and

ytD - yt - y (5.8b)
where t = 1,2,...,T and k = 2,3,...,K. Let XD = [X D2/X D3/ —  

x ] and y = [y .y .... ,yTO]'. In addition, let b. DK -D ID 2D TD -D

denote the least squares estimate of the centered data, that 

is

b = (X'X )-1X'y . (5.9)-D D D D±D

Let P D be the matrix whose columns are the orthogonal 

characteristic vectors of (X dXd) corresponding to the 
ordered characteristic roots of (X pXD) which are contained 

in the diagonal matrix Ad = diag(XiD,A2d, . . . , D) such
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that A £* £...ax % . Following the procedure outlinedID 2D (K-l),D 3
in Section 4.5, we are able to construct a restriction 

matrix R such that

where £d is the parameter vector without the intercept 
term. For our study, we disregard the small eigenvalues 
which contribute in total roughly 5% of the total variation. 

In other words, we treat the last n eigenvalues of the
K-l K-l

vector A such that Z A / Z A „ = 0.05 as neglectable.D 1 =n 1»u i =1 1,D

This selection method permits the eigenvalues that are 
relatively small to be eliminated while maintaining most of 
the variability in the data. The variability is reflected in 
the eigenvalues, Equation (4.5). As a result, the number of 

restrictions used is 10,

where r is a null vector of dimension J, J - 10.

With the restriction above, we express the restricted 
least squares estimator as

Referring to Section 4.5, the positive rule PC-Stein 

estimator is

Rfi = P 8-D 2D - D (5.10)

Rj3D = r = 0

(5.11)

+ b-DR (5.12)

where
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and

(Rb - r)'[R(x;x ) ‘ V ] ’ 1(Rb - r)
 ------------------- =*a------------------Jcr

which is the likelihood ratio test statistic of the

restrictions R£d = 0. The constant c is specified as

c - a(T-Kl) 
c ~ J

where K1 = K-l and 0 < a < amax
tr{ [R(X'X )~1R' J^RfX'X J^DfX'X )R' }'■l ' d d  d d  d d  2

max (T-Kl+2) 7?

7) is the largest eigenvalue of the term in the brackets { }. 

D is a weight matrix which is positive definite. There are 

several choices of D. We select D=I and D = (XpXD) . Note 
that the matrix D mentioned above need not be the same as 
the matrix D in the weight squared error loss function in 
Equation (4.6). With the weight being X^XD, we are 

evaluating the estimator based on its predictive ability. 
With the weight being I, we are evaluating the estimator 

based on its mean square error or its ability of estimating 

the parameter.
When we use D = (X'X ) . the constant a is reduced toD D max

a 2 (J-2)
max (T-Kl+2)

We find the shrinkage constant a by averaging 0 and a ^ ; hence,

a~ maxa = —  ̂  •
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We have shown in Section 4.5 that the value of a such 
that 0 < a < a yields Stein-like estimator that has riskmax
less than or equal to those of least squares when the number 

of restriction is greater than three.
ASimilar to the case of the estimate /3£0 of the equity 

estimator, the vector fi+ does not contain the estimate for' -D

the intercept term. The intercept can be estimated by the 

relationship stated in Equation (5.6).
3. Stein-like estimator (Stein).
The Stein estimator is almost identical to PC-Stein 

estimator except for the restrictions. The restrictions are

which implies that we shrink all parameters in f?D towards 

the origin. In other words, the restriction matrix R is an 
identity matrix; therefore, J = Kl.

Once again, we employ two weight matrices, D=I and 

D=(X'X ) . When we use D=I, the constant a is simplifiedD D max

to

2 tr(X'XJ “V  n_  D D (K-l), D
3 max “ (T-Kl+2)

When we use D=X'X , the constant a is reduced toD D max

2 (Kl-2) 
max (T-Kl+2)

4. Ridge regression.
Ridge regression is commonly applied to data presented 

in the correlation matrix form. Let b be the least squares— c

estimate of the standardized data, ie.
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b = r"1 • r- c xx xy

Let <r2 = (y - X b )' (y - Xb)/(T-Kl). The ridgec - c c-c —c c — c

regression is expressed as

/3* (k) = { r + kl fV- cO xx Kl xy

where
a2K1<tv = ____£_

K b'b-c-c

The estimator /3* (k) is associated with the centered— cO

and normalized variables and, as a consequence, have to be 
converted back to the original parameter space. 
Subsequently, we have to estimate the intercept term as 

well. The procedures for converting the estimate into the 
original parameter space and calculating the intercept term 

are described in Section 5.3.1.

5.4 MONTE CARLO EXPERIMENTS

5.4.1 PARAMETERS ESTIMATION.

Before performing the Monte Carlo experiments, we apply 

the equity estimator and its alternatives to the original 
price-promotion data used in our study. We expect the 

estimates of and /3 , i = 2,3,4 and j = 2,4,5 to be
negative; brands #2, #3, and #4 do not use major ad only
promotions. The parameter measures the own price effects 
on units sold of the target brand and the parameters 

measure the price discount effects and promotion effects of
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competitive brands on units sold of the target brand. The 

estimates of the parameters a , a , a and a are expected
£  w  4  D

to have positive signs since these variables reflect the own 
price discount effects and own promotion effects on units 
sold of the target brand. In addition, we expect that the 

parameters associated with the variable indicating the use 

of display and major promotion campaign of a particular 
brand to be larger in absolute value that the parameters 

associated with the variables indicating display only and 

major ad only campaign. In other words, we expect the use of 
combination of promotion campaigns to be more effective than 

the use of just one campaign. This is called the inequality 

restriction.
We present the parameter estimates obtained from the 

equity estimator and its alternatives in Table 5.2. Brands 
#2, #3 and #4 do not use major ad only promotion. The

findings are

1. The Stein (D=I) and PC-Stein (D=I) estimator yield 

identical results to those of least squares. The reason is 

that the constant a becomes 0 and the two Stein-likemax

estimators offer no improvement over the least squares 

estimator.
2. The least squares, Stein (D=X^Xd) and PC-Stein 

(D=X'Xd) estimator yield incorrect signs for the estimates 

of the parameter a , /3 , fi , fl and S .  Among these1 22 34 35 42
estimates, the ones that we are most concerned with are the 

estimates of which is the parameter measuring own price
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TABLE 5.2
The estimated parameter values of the equity estimator 

and its alternatives.

a

a
a
a

a

0
0
0
0
0
0
0
0
0

22
24

25

32

34

35

42

44

45

10
li
12

u13

Equity Ridge Stein PC-Stein 0LS HCA.

10.105 9.513
(d=x ;xd)
2.071

(d=x ;xd)
3.019 0.945 3.55

-2.012 -1.347 6.619 5.619 7.900 -1.25
1.451 1.645 1.294 1.217 1.544 2.01
0.489 0.326 0.242 0.240 0.289 1.53
0.162 0.259 0.201 0.203 0.240 1.73
0.968 1.341 1.214 1.402 1.448 2.53

-0.575 0.377 0.400 0.278 0.477 -0.67
-0.105 -0.287 -0.229 -0.309 -0.273 -0.15
-0.316 -0.495 -0.471 -0.562 -0.562 -0.28
-1.572 -3.040 -3.533 -3.081 -4.217 -1.01
0.198 0.159 0.119 0.103 0.142 1 o 0 o

-0.190 0.313 0.600 0.308 0.716 -0.58
-0.880 -0.404 1.303 1.073 1.555 -0.60
-0.231 -0.306 -0.347 -0.306 -0.414 -0.08
-0.357 -0.509 -0.714 -0.819 -0.853 -0.15
0.080 -0.096 -0.220 -0.066 -0.262 0.10
0.071 -0.069 -0.420 -0.321 -0.502 0.04

-0.168 -0.372 -1.056 -0.905 -1.261 0.14
-0.088 -0.304 -1.015 -0.785 -1.212 0.23
0.211 0.002 -0.973 -0.769 -1.162 0.28

-0.363 -0.517 -1.561 -1.466 -1.863 0.20
-0.720 -0.858 -1.937 -1.892 -2.312 0.17
-0.039 -0.266 -1.427 -1.208 -1.703 0.17
-0.174 -0.547 -1.863 -1.614 -2.224 0.18
0.064 -0.072 -1.445 -1.185 -1.724 0.15

-0.252 -0.254 -1.358 -1.217 -1.621 0.17
-0.264 -0.131 -1.095 -0.975 -1.307 0.14

note: HCA is the true parameter values used in the Monte 
Carlo experiments.
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effects on units sold of our target brand, which must be 
negative. It appears that the presence of multicollinearity 
in the actual data and mean centered data cause these 
estimates to have incorrect signs.

3. The equity estimator and ridge regression estimator 

yield positive signs for the estimates of the parameter j334 

which expected to have a negative sign. Only the equity 
estimator gives the correct sign for the parameter /322.

4. For all of the estimators considered, the inequality 

restriction is achieved only if the parameters associated 

with the variables indicating promotion campaigns of a brand 

have the correct signs.
From Table 5.2, we observe that only the equity 

estimator yields estimates of key parameters with acceptable 

signs, except for the paramter 034* Nevertheless, we do not 
have any information about the performance of the equity 

estimator in small samples compared to its alternatives. In 

order to resolve this issue, we introduce Monte Carlo 

experiments into our study.

5.4.2 THE NATURE OF MONTE CARLO EXPERIMENTS.

A Monte Carlo experiment is a simulation exercise 

designed to investigate the small sample properties of 
estimators. In this experiment, we assume that the exact 

nature of the relationship between the endogenous variable 

and its explanatory variables are known. Consider the model

y - X/3 + e , (5.13)
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where y is a (Txl) vector of observations on a dependent 
variable, X is a given (TxK) matrix of exogenous variables 
and e is a (Txl) random vector which is normally distributed 
with mean vector 0 and covariance matrix cr21̂ .

We assume that the real values of § and cr2 are known. 

Normal random number generator is used to construct N 

samples of the vector e which are all normally distributed 

with mean vector 0 and covariance matrix <r2IT. Subsequently, 
we add the generated vectors to the vector Xj8 and obtain N 
repeated samples of the vector y.

The next stage is to select the vector of actual 

parameter values to be used in generating N repeated samples 

of y. We use the parameter estimates presented in Hill, 
Cartwright and Arbaugh (1991), which utilizes seemingly 

unrelated regressions technique, as the vector of actual 
parameter values since they have the correct signs and 

follow the inequality restrictions. The use of estimates 

obtained from the estimator considered in Table 5.2 may give 

advantage to the estimator whose estimated parameters are 

selected. We use the estimate of cr2 obtained via the least 

squares estimator as the true value, in this case, cr2 =

0.169431.
The number of repeated samples of y generated is 500. 

We use the Monte Carlo experiment to study three aspects of 

the small sample performance of the equity estimator and its 

alternatives.
1. We evaluate the small sample performances of the
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equity estimator and its alternatives via the weighted 
square error loss measure, Equation (4.6). The weight 
matrices used are I and X'X. With the identity matrix as the 
weight matrix, we get mean square error loss and the 

estimator is evaluated on its ability to estimate the 

parameters vector. With the X'X as the weight matrix, we get 

the mean square error of prediction loss and the estimator 
is evaluated on its ability to predict the in-sample 

observations.
We perform Monte Carlo experiments utilizing various 

parameter lengths. Let /3q denote the estimates obtained from 

the column labeled HCA in Table 5.2 and c be any constant, 
then the parameter 0 in Equation (5.13) is defined as

§  =  cQq (5.14)

c is the parameter length. We alter the parameter length of 

/3 by altering the constant c. Finally, we calculate the 

signal to noise ratio (R) associated with the values of c 

and cr2 by the relationship

cV<3
R =  -I---- (5.15)

cr

2. As a second part of the study, we perform the Monte 

Carlo experiments on the equity estimator and its 

alternatives using various vector lengths in the data 
generating process, just like in the previous part, but we 

are going to focus on the estimation of a single parameter 

instead of the estimation of the whole parameter vector. We
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select to study the estimation of the parameter a2, which is
the own discount effects. The estimates of a obtained from2
the equity estimator and its alternatives are evaluated 
based on their mean square error and bias.

3. Finally, we discuss the performances of the equity 
estimator when the data is not well conditioned. We have 

shown that when the data is centered and normalized to unit 
length the degree of multicollinearity decreases 

dramatically. Therefore, by applying the equity estimator to 

the centered and normalized to unit length data, we fail to 
test the performances of the equity estimator when there is 

severe multicollinearity. Consequently, we apply the equity 
estimator to the actual data and mean centered data in the 

content of Monte Carlo experiments. In our experiments, we 
use various parameter lengths in the data generating 

process. The performance of the equity estimator is then 

evaluated based on the mean square errors, prediction mean 

square errors, mean square errors of the estimates of <*2 and

the bias of the estimates of a .2

5.4.3 MONTE CARLO EXPERIMENTS RESULTS.

l.Mean square and prediction mean square error 

criteria.
We examine the small sample properties of the equity 

estimator and its alternatives by varying the vector length 

in order to alternate the signal to noise ratio.

In Tables 5.3 and 5.4, we present the mean square
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TABLE 5.3
The average mean square errors of the equity estimator

and its alternatives associated with various vector lengths.
length(R)

0.1(1.934)
0.2(7.734)
0.4(30.94)
0.6(69.60)
0.8(123.7)
1.0(193.4)
1.2(278.4)
1.4(379.0)
1.6(495.0)
1.8(626.4)
2.0(773.4)
3.0(1740)
4.0(3094)
5.0(4834)

Equity Ridge Stein PC-Stein OLS
(d =x ;x d)

3.434 7.240 13.131 20.163 97.160
3.385 7.556 22.911 23.977 97.160
3.636 8.679 50.333 36.889 97.160
4.378 10.303 69.361 51.878 97.160
5.517 12.336 79.599 64.133 97.160
7.017 14.721 85.271 72.893 97.160
8.868 17.399 88.644 78.936 97.160

11.064 20.300 90.785 83.115 97.160
13.603 23.357 92.219 86.067 97.160
16.485 26.509 93.224 88.206 97.160
19.709 29.702 93.953 89.796 97.160
40.947 44.974 95.715 93.769 97.160
70.713 57.467 96.344 95.229 97.160
109.004 66.755 96.637 95.918 97.160

FIGURE 5.1

The average mean square errors of the equity estimator 
and its alternatives associated with various vector lengths.

oo

oCO

oN

LENGTH

 RIDGE ----- EQUITY STEIN  PC-STEIN . . . OLS
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TABLE 5.4
The average prediction mean square errors of the equity 

estimator and its alternatives associated with various 
vector lengths.

0.1(1.934)
0.2(7.734)
0.4(30.94)
0.6(69.60)
0.8(123.7)
1.0(193.4)
1.2(278.4)
1.4(379.0)
1.6(495.0)
1.8(626.4)
2.0(773.4)
3.0(1740)
4.0(3093)
5.0(4833)

FIGURE 5.2
The average prediction mean square errors of the equity 

estimator and its alternatives associated with various 
vector lengths.

Equity Ridge Stein PC-Stein OLS
(d =x;x d) (d=x;xd>

3.588 2.948 1.040 3.229 4.536
3.589 3.069 1.983 3.382 4.536
4.002 3.388 3.338 3.784 4.536
4.978 3.661 3.901 4.081 4.536
6.431 3.851 4.156 4.246 4.536
8.330 3.979 4.287 4.337 4.536

10.665 4.067 4.362 4.392 4.536
13.430 4.130 4.408 4.427 4.536
16.625 4.179 4.438 4 .451 4.536
20.249 4.217 4.459 4.468 4.536
24.301 4.248 4.474 4.480 4.536
50.973 4.349 4.510 4.510 4.536
88.329 4.405 4.522 4.521 4.536
136.366 4.440 4.528 4.526 4.536

CM

0.6
LENGTH

 RIDGE ------- EQUITY STEIN ....PC-STEIN . . . OLS
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errors (MSE) and prediction mean square error (PMSE) of the 
equity estimator and its alternatives when the vector
lengths are increasing. From Table 5.3 and Figure 5.1, we 
observe that the equity estimator has the lowest MSE when 

the vector length is less than 3. As the vector length 
surpasses 3, the MSE of the equity estimator increases

rapidly. Unlike the other biased estimators considered, the 

MSE of the equity estimator exceeds that of the least 

squares estimator for high values of vector length. The 
PC-Stein (D=X^Xd) estimator produces MSE's that are slightly 

lower than those of the Stein (D=X^Xd) estimator. The Stein 
(D=I) and PC-Stein (D=I) estimator yield the same values of 

MSE as those of the least squares estimator for all values 

of vector length.
From Table 5.4 and Figure 5.2, we observe that the 

equity estimator has the highest PMSE among the biased 

estimators considered. Furthermore, the PMSE of the equity 

estimator exceed that of the least squares estimator for 

vector lengths in excess of 0.6. We note that at large 

vector length, the PMSE's of the equity estimator are much

higher than those of its alternatives. The Stein (D=X^Xd)

estimator gives the lowest PMSE for vector lengths less than 

0.4, while the ridge regression estimator gives the lowest 
PMSE for vector lengths greater than 0.4. The Stein (D=I) 

and PC-Stein (D=I) yield identical PMSE's to those of the 

least squares estimator for all vector lengths.

2. The estimation of a . 2
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We are now going to study the performance of the equity 
estimator and its alternatives in estimating a parameter of 

interest which is «2 or own discount effects. Again, we 

conduct the study when the vector length used in the data 
generating process is increasing. The variable d2, the own 

discount variable, is one of the variables that have small 

eigenvalues which indicates strong linear relationship with 

the other variables. From Table 5.5 and Figure 5.3, we 
observe that the equity estimator produces the smallest MSE 

for all values of vector length greater than 0.1. In 

addition, for vector lengths exceeding 0.1, the MSE's 

obtained from the equity estimator are much smaller than 
those of its alternatives. Nevertheless, the bias of the 

equity estimator increases steadily as the vector length 
surpasses 0.6 as demonstrated in Table 5.6 and Figure 5.4.

3. Applying the equity estimator to data with various degree 
of multicollinearity.

We apply the equity estimator to generated data that 
are not centered and normalized to unit length. The purpose 

is to study the performance of the equity estimator when the 

data is not well conditioned. As discussed earlier, the 

equity estimator is designed to handle the problem of 

estimation in the presence of multicollinearity and, as a 

consequence, should perform well even if there is severe 
multicollinearity. By centering and normalizing to unit 
length, we have drastically lessened the degree of 

multicollinearity. Thus, by applying the equity estimator to
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TABLE 5.5
The average mean square errors of the estimates of <*2 

of the equity estimator and its alternatives associated with 
various vector lengths.
length(R) Equity Ridge Stein

( ° = w
PC-Stein
<D= W

OLS

0.1(1.934) 0.171 0.276 0.108 0.137 0.614
0.2(7.734) 0.163 0.287 0.209 0.186 0.614
0.4(30.94) 0.154 0.322 0.391 0.318 0.614
0.6(69.60) 0.151 0.365 0.487 0.427 0.614
0.8(123.7) 0.151 0.406 0.535 0.492 0.614
1.0(193.4) 0.152 0.442 0.561 0.529 0.614
1.2(278.4) 0.154 0.472 0.576 0.553 0.614
1.4(379.0) 0.156 0.496 0.586 0.568 0.614
1.6(495.0) 0.158 0.514 0.592 0.578 0.614
1.8(626.4) 0.162 0.525 0.597 0.585 0.614
2.0(773.4) 0.165 0.541 0.600 0.591 0.614
3.0(1740) 0.190 0.575 0.608 0.604 0.614
4.0(3093) 0.224 0.590 0.610 0.608 0.614
5.0(4833) 0.265 0.598 0.612 0.610 0.614

FIGURE 5.3
The average mean square errors of the estimates of a z 

of the equity estimator and its alternatives associated with 
various vector lengths.
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TABLE 5.6
The average bias of the estimates of a 2

estimator and its alternatives associated 
vector lengths.
length(R)

0.1(1.934)
0.2(7.734)
0.4(30.94)
0.6(69.60)
0.8(123.7)
1.0(193.4)
1.2(278.4)
1.4(379.0)
1.6(495.0)
1.8(626.4)
2.0(773.4)
3.0(1740)
4.0(3093)
5.0(4833)

The average bias of the estimates of a z
estimator and its alternatives associated 
vector lengths.

of the equity 
with various

Equity Ridge Stein PC-Steini OLS
(d=x ;x d) (d =x ;x d)

0.010 -0.016 -0.146 -0.095 -0.011
0.012 -0.024 -0.231 -0.173 -0.011

-0.002 -0.026 -0.241 -0.138 -0.011
-0.022 -0.020 -0.199 -0.262 -0.011
-0.040 -0.015 -0.164 -0.239 -0.011
-0.057 -0.012 -0.138 -0.211 -0.011
-0.073 -0.012 -0.120 -0.187 -0.011
-0.089 -0.012 -0.105 -0.167 -0.011
-0.104 -0.014 -0.094 -0.151 -0.011
-0.119 -0.016 -0.086 -0.137 -0.011
-0.133 -0.018 -0.079 -0.126 -0.011
-0.206 -0.025 -0.057 -0.090 -0.011
-0.278 -0.028 -0.045 -0.071 -0.011
-0.349 -0.029 -0.039 -0.059 -0.011

FIGURE 5.4
of the equity 
with various
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the centered and normalized to unit length data, we are 
estimating the data set that is fairly well conditioned 
which may not indicate the usefulness of the equity 
estimator in coping with multicollinearity problem.

We are going to study the small sample properties of 
the equity estimator when applied to the actual data, mean 
centered data and centered and normalized to unit length 
data. First, we compare the parameter estimates of the 

original data set. Second, within the context of the Monte 

Carlo experiments, we study the small sample properties of 

the equity estimator when applied to various type of data as 
we increase the vector length in the data generating 

process.

3.1 Parameter estimates.
In Table 5.7, we present the parameter estimates 

obtained through applying the equity estimator to the 

centered and normalized to unit length data, the actual data 
and mean centered data. We find that the equity estimator 

yields vastly different estimates of the same parameter when 

different data conditioning tools are used. By applying the 

equity estimator to the actual data, we find that many of 

the estimates have incorrect signs.

3.2 Increasing vector length.
From Table 5.8 and Figures 5.5a and 5.5b, we find that 

the MSE's obtained by applying the equity estimator to the 
actual data have the lowest value when R is extremely small. 

Moreover, we notice that as the data used in the estimation
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TABLE 5.7
The estimated parameter values of the equity estimator

applied to various types of conditioned data.

Parameter centered and 
normalized

actual centered

ao 10.105 3.163 7.938
a1 -2.012 3.223 -0.018
a2 1.451 0.381 0.570

«3 0.489 0.119 0.243

*4 0.162 1.008 0.291

as 0.968 0.457 1.085

^22 -0.575 0.284 -0.086

**24 -0.104 0.700 -0.183

^25 -0.316 0.406 -0.486

^32 -1.571 0.053 -0.638

034 0.198 0.886 0.372

035 -0.190 0.171 -0.358

042 -0.880 0.073 -0.129

044 -0.231 0.148 -0.239

045 -0.357 0.042 -0.406
*2 0.080 0.265 0.106

*3 0.071 0.317 0.108

*4 -0.168 0.154 -0.186

*S -0.089 0.144 -0.098

*6 0.211 0.300 0.210

*7 -0.363 0.195 -0.356

*8 -0.720 0.109 -0.729
*9 -0.040 0.183 -0.081

*10 -0.174 0.084 -0.214

*11 0.064 0.144 -0.016

*12 -0.251 0.130 -0.334

*13 -0.264 0.179 -0.306
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TABLE 5.8
The average mean square errors of the equity estimator

applied to various types of conditioned data.
R length centered and actual center*

normalized
1.934 0.10 3.434 0.289 0.092
7.734 0.20 3.385 1.035 1.058
30.94 0.40 3.636 4.044 2.000
69.60 0.60 4.378 9.061 3.773
123.7 0.80 5.517 16.085 6.313
193.4 1.00 7.017 25.116 9.599
278.4 1.20 8.868 36.154 13.623
379.0 1.40 11.064 49.199 18.383
495.0 1.60 13.603 64.250 23.879
626.4 1.80 16.485 81.309 30.109
773.4 2.00 19.708 100.374 37.084
1740 3.00 40.947 225.803 82.907
3094 4.00 70.713 401.403 147.087
4834 5.00 109.004 627.174 229.613

FIGURE 5. 5a
The average mean square errors of the equity estimator 

applied to various types of conditioned data.
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FIGURE 5.5b
The average mean square errors of the equity estimator

applied to various types of conditioned data.
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process become more well conditioned, the MSE's obtained via 
the equity estimator increases less drastically as R 
increases. We arrive at similar conclusions in the case of 
the PMSE's obtained from applying the equity estimator to 
the various type of conditioned data as presented in Table 

5.9 and Figures 5.6a and 5.6b.
From Table 5.10 and Figure 5.7, we discover that the 

MSE's of the estimates of «2 obtained through the equity 
estimator are very much dependent on the conditioning of the 
data. When the data are not centered and normalized to unit 

length, the MSE's obtained are remarkably low at small 
values of vector length. However, the MSE's increase at an 
accelerating pace as the values of vector length become 

higher. We find resemblance between the MSE's obtained from 

applying the equity estimator to the actual data and the 
mean centered data. Recall that when we examine the MSE's 

and PMSE's obtained via applying the equity estimator of the 

model as a whole, we find similarity between the MSE's and 

PMSE's obtained from the mean centered data and centered and 

normalized to unit length data instead.

From Table 5.11 and Figure 5.8a, we find that the bias 

of the estimates of «2 obtained from applying the equity 

estimator to the actual data are much higher than those 

obtained from the normalized data especially around the 
vector length 0.5 where the bias acquired from the 
normalized data reaches its minimum. As the vector length 

surpasses 1, the bias obtained from the actual data and the
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TABLE 5.9
The average prediction mean square errors of the equity

estimator applied to various types of conditioned data.
R length centered and actual centered

normalized
1.934 0.10 3.588 0.651 3.220
7.734 0.20 3.589 1.522 3.119
30.94 0.40 4. 002 5.167 3.658
69.60 0.60 4.978 11.254 5.177
123.7 0.80 6.431 19.775 7.484
193.4 1.00 8. 330 30.731 10.514
278.4 1.20 10.665 44.122 14.247
379.0 1.40 13.430 59.946 18.673
495.0 1.60 16.625 78.204 23.791
626.4 1.80 20.249 98.897 29.598
773.4 2.00 24.301 122.Q23 36.093
1740 3.00 50.973 274.168 78.883
3094 4.00 88.329 487.166 138.849
4834 5.00 136.366 761.016 215.987

FIGURE 5.6a
The average prediction mean square errors of the equity 

estimator applied to various types of conditioned data.
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FIGURE 5.6b
The average prediction mean square errors of the equity

estimator applied to various types of conditioned data.
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TABLE 5.10
The average mean square errors of the estimates of a.

of the equity estimator applied to various types of 
conditioned data.

R length centered and actual centered
normalized

1.934 0.10 0.171 0.031 0.047
7.734 0.20 0.164 0.122 0.092
30.94 0.40 0.154 0.488 0.302
69.60 0.60 0.151 1.097 0.670
123.7 0.80 0.151 1.949 1.192
193.4 1.00 0.152 3.045 1.863
278.4 1.20 0.154 4.384 2.685
379.0 1.40 0.156 5.967 3.656
495.0 1.60 0.159 7.793 4.777
626.4 1.80 0.162 9.862 6.047
773.4 2.00 0.165 12.175 7.467
1740 3.00 0.190 27.390 16.809
3094 4.00 0.224 48.690 29.889
4834 5.00 0.269 76.076 46.706

FIGURE 5.7
The average mean square errors of the estimates of a.

of the equity estimator applied to the actual and mean
centered data relative to those of the centered and
normalized data.
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TABLE 5.11
The bias of the estimates of a of the equity estimator

applied to various types of conditioned data.
R length centered and actual centered

normalized
1.934 0.10 0.010 -0.172 -0.121
7.734 0.20 0.013 -0.348 -0.250
30.94 0.40 -0.002 -0.698 -0.526
69.60 0.60 -0.022 -1.047 -0.804
123.7 0.80 -0.040 -1.396 -1.081
193.4 1.00 -0.057 -1.745 -1.357
278.4 1.20 -0.073 -2.094 -1.631
379.0 1.40 -0.089 -2.442 -1.906
495.0 1.60 -0.104 -2.791 -2.180
626.4 1.80 -0.119 -3.140 -2.455
773.4 2.00 -0.134 -3.489 -2.729
1740 3.00 -0.206 -5.233 -4.097
3094 4.00 -0.278 -6.978 -5.465
4834 5.00 -0.349 -8.722 -6.833

FIGURE 5.8a
The bias of the estimates of «2 of the equity estimator

applied to the actual and mean centered data relative to 
those of the centered and normalized data.
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FIGURE 5.8b
The bias of the estimates of of the equity estimator

applied to the actual and mean centered data relative to 
those of the centered and normalized data.
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mean centered data appear to be a constant function of those 
acquired from the normalized data. Figures 5.4 and 5.8b 
demonstrate that the bias of the estimates of a2 obtained by 

applying the equity estimator to various data show linear 

relationship with the vector length.
We now apply the ridge regression estimator, the Stein 

estimators and the PC-Stein estimators to various 

conditioned data set. The results are presented in Tables 

5.12 - 5.16. Table 5.12 presents the parameter estimates

obtained from applying the ridge regression estimator to 
various conditioned data. We discover that the estimates in 

Table 5.12 have more similarity across the data set than 

those of the equity estimator shown in Table 5.7. In 
addition, the estimates in Table 5.12 follow the inequality 
restriction. Nevertheless, only the estimate of obtained 
via the normalized data has the correct sign.

From Table 5.13 and Figure 5.9, we find that the 

application of the ridge regression estimator to the mean 

centered data produces the smallest MSE's. However, from 

Table 5.14 and Figure 5.10, the PMSE's vary slightly across 

data. The PMSE's of the normalized data are the smallest at 

small vector length. The differences among the PMSE's of 

various conditioned data set dwindle as the vector length 
increases. Unlike the case of the overall MSE, the MSE's of 
the estimates of «2 obtained through the normalized data 

shows the best performance as shown in Table 5.15 and Figure 

5.11. There is minimal difference between the MSE's of the
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TABLE 5.12
The estimated parameter values of the ridge regression

estimator applied to various types of conditioned data.

Parameter centered and actual centered
normalized

ao 
“i
*2

%  
as 
*22 
*24 
*25 

*32 

*34 

*35 

*42 

*44 

*45 

^2 
^3

^7

»X0 
**tl 
**12
^3

9.513 4.690 8.159
-1.347 3.668 0.136
1.645 1.545 1.446
0.326 0.335 0.364
0.259 0.318 0.271
1.341 1.441 1.433
0.377 0.430 0.511

-0.287 -0.288 -0.303
-0.495 -0.510 -0.531
-3.040 -2.740 -2.786
0.160 0.189 0.169
0.313 0.231 0.263

-0.404 -0.275 -0.182
-0.306 -0.268 -0.315
-0.509 -0.609 -0.604
-0.096 -0.085 -0.173
-0.069 -0.152 -0.169
-0.372 -0.762 -0.556
-0.304 -0.717 -0.486
0.002 -0.480 -0.210

-0.517 -1.070 -0.749
-0.858 -1.464 -1.126
-0.266 -0.901 -0.524
-0.547 -1.414 -0.883
-0.072 -0.871 -0.403
-0.254 -0.804 -0.538
-0.131 -0.620 -0.376
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TABLE 5.13
The average mean square errors of the ridge regression

estimator applied to various types of conditioned data.

R length centered and 
normalized

actual centered.

1.934 0.10 7.240 5.546 5.332
7.734 0.20 7.556 5.894 5.471
30.94 0.40 8.679 7.247 5.998
69.60 0.60 10.303 9.432 6.825
123.7 0.80 12.336 12.398 7.918
193.4 1.00 14.721 16.097 9.250
278.4 1.20 17.399 20.480 10.802
379.0 1.40 20.300 25.498 12.555
495.0 1.60 23.357 31.096 14.490
626.4 1.80 26.509 37.219 16.590
773.4 2.00 29.702 43.810 18.838
1740 3.00 44.974 81.611 31.664
3093 4.GO 57.437 122.029 45.531
4833 5.00 66.755 159.033 58.661

FIGURE 5.9
The average mean square errors of the ridge regression 

estimator applied to various types of conditioned data.
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TABLE 5.14
The average prediction mean square errors of the ridge 

regression estimator applied to various types of conditioned
data.

R length centered and actual centered

1.934 0.10
normalized
2.948 3.570 3.499

7.734 0.20 3.068 3.593 3.523
30.94 0.40 3.388 3.666 3.601
69.60 0.60 3.661 3.750 3.691
123.7 0.80 3.851 3.827 3.774
193.4 1.00 3.979 3.894 3.846
278.4 1.20 4.067 3.953 3.906
379.0 1.40 4.130 4.005 3.958
495.0 1.60 4.179 4.053 4.002
626.4 1.80 4.217 4.096 4.041
773.4 2.00 4.248 4.137 4.075
1740 3.00 4.349 4.310 4.200
3094 4.00 4.405 4.449 4.284
4834 5.00 4.440 4.561 4.347

FIGURE 5.10
The average prediction mean square errors of the ridge 

regression estimator applied to various tyes of conditioned 
data.
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TABLE 5.15
The average mean square error of the estimates of az of

the ridge regression estimator applied to various types of 
conditioned data.

R length centered and actual centered
normalized

1.934 0.10 0.276 0.326 0.301
7.734 0.20 0.287 0.333 0.311
30.94 0.40 0.322 0.357 0.345
69.60 0.60 0.365 0.388 0.389
123.7 0.80 0.406 0.419 0.434
193.4 1.00 0.442 0.447 0.474
278.4 1.20 0.472 0.472 0.508
379.0 1.40 0.496 0.493 0.535
495.0 1.60 0.514 0.511 0.557
626.4 1.80 0.529 0.526 0.575
773.4 2.00 0.541 0.539 0.588
1740 3.00 0.576 0.581 0.623
3094 4.00 0.590 0.601 0.632
4834 5.00 0.597 0.611 0.635

FIGURE 5.11
The average mean square error of the estimates of a 2 of

the ridge regression estimator applied to various types of 
conditioned data.
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TABLE 5.16
The bias of the estimates of a o f  the ridge regression

estimator applied to various types of conditioned data.

R length centered and actual centered
normalized

1.934 0.10 -0.017 -0.041 -0.050
7.734 0.20 -0.024 -0.072 -0.090
30.94 0.40 -0.026 -0.125 -0.163
69.60 0 . 60 -0.020 -0.165 -0.221
12 3. “7 0.80 -0.015 -0.193 -0.263
193.4 1. 00 -0.012 -0.211 -0.293
278.4 1.20 -0.012 -0.221 -0.313
379.0 1.40 -0.012 -0.227 -0.324
495.0 1. 60 -0.014 -0.228 -0.330
626.4 1.80 -0.016 -0.227 -0.331
773.4 2.00 -0.018 -0.225 -0.329
1740 3 . 00 -0.025 -0.203 -0.301
3094 4.00 -0.028 -0.182 -0.268
4834 5.00 -0.029 -0.166 -0.239

FIGURE 5. 12
The bias of the estimates of a 2 of the ridge regression 

estimator applied to various types of conditioned data.
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actual data and the normalized data. The estimates of az

acquired from the normalized data produces the smallest bias

as shown in Table 5.16 and Figure 5.12.
The parameter estimates obtained via applying the Stein 

(D =X'X) estimator to various conditioned data are presented 

in Table 5.17. The estimates from the mean centered data and 
normalized data are identical. The estimates from the actual 
data are very alike those of the least squares shown in 

Table 5.2. From Table 5.18 and Figure 5.13, we discover that
applying the Stein (D=X'X) estimator to the normalized data
or mean centered data produces the smallest MSE's for all 
vector lengths. Similar deductions can be made for the cases

of the overall PMSE and the MSE of the estimates of a which2
are outlined in Tables 5.19-5.20 and Figures 5.14-5.15. From 

Table 5.21 and Figure 5.16, we observe that the estimates of 
<*2 obtained from the actual data give lower bias than those 

of the mean centered data or the normalized data.
In Table 5.22, we report the parameter estimates 

obtained by applying the PC-Stein (D=X'X) estimator to 

various data. The parameter estimates change moderately as 

we change the data compared to the estimates of the equity 

estimator. From Tables 5.23-5.25 and Figures 5.17-5.19, we 

discover that there are little differences when different 
conditioned data are used in the estimation process. The 
bias of the estimates of the parameter «2 of the normalized 

data shown in Table 5.26 and Figure 5.20 are the smallest.
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TABLE 5.17
The estimated parameter values of the Stein (D=X'X )

estimator applied to various types of conditioned data.

Parameter centered and 
normalized

actual centered

a0 2.071 0.944 2.071
ar 6.619 7.891 6.619

1.294 1.542 1.294

«3 0.242 0.289 0.242
0.201 0.240 0.201

as 1 e 214 1.447 1.214

e 22 0.400 0.477 0.400

e 24 -0.229 -0.273 -0.229

e2s -0.471 -0.561 -0.471

3̂2 -3.533 -4.212 -3.533

^34 0.119 0.142 0.119

^35 0.600 0.715 0.600
1.303 1.553 1.303

^44 -0.347 -0.413 -0.347

^45 -0.714 -0.852 -0.714
-0.220 -0.262 -0.220

^3 -0.420 -0.501 -0.420

^4 -1.056 -1.259 -4.056

^5 -1.015 -1.210 -1.015
-0.973 -1.160 -0.973
-1.561 -1.259 -1.561

^8 -1.937 -1.160 -1.937
-1.427 -1.701 -1.427

»10 -1.863 -2.221 -1.863
-1.445 -1.722 -1.445

*12 -1.358 -1.619 -1.358

*13 -1.095 -1.305 -1.095
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TABLE 5.18
The average mean square errors of the Stein 

(D=X'X)estimator applied to various types of conditioned 
data.

R length centered and actual centered
normalized

1.934 0.10 13.131 39.495 13.131
7.734 0.20 22.911 71.489 22.911
30.94 0.40 50.334 89.397 50.334
69.60 0.60 69.362 93.583 69.362
123.7 0.80 79.601 95.124 79.601
193.4 1.00 85.273 95.851 85.273
278.4 1.20 88.645 96.249 88.645
379.0 1.40 90.786 96.490 90.786
495.0 1.60 92.221 96.647 92.221
626.4 1.80 93.225 96.755 93.225
773.4 2.00 93.954 96.832 93.954
1740 3.00 95.717 97.015 95.717
3094 4.00 96.345 97.079 96.345
4834 5.00 96.638 97.109 96.638

FIGURE 5.13
The average mean square errors of the Stein 

(D=X'X)estimator applied to various types of conditioned 
data.
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TABLE 5.19
The average prediction mean square errors of the Stein

(D=X'X)
data.

estimator applied to various types of con

R length centered and 
normalized

actual center

1.934 0.10 1.040 2.811 1.040
7.734 0.20 1. 983 3.914 1.983
30.94 0.40 3.338 4.368 3.338
69.60 0.60 3.901 4.463 3.901
123.7 0.80 4.156 4.497 4.156
193.4 1.00 4.287 4.513 4.287
278.4 1.20 4.362 4.521 4.362
379.0 1.40 4.408 4.526 4.408
495.0 1.60 4.438 4.529 4.438
626.4 1.80 4.459 4.531 4.459
773.4 2.00 4.474 4.532 4.474
1740 3.00 4.510 4.535 4.510
3094 4.00 4.523 4.536 4.523
4834 5.00 4.528 4.537 4.528

FIGURE 5.14
The average prediction mean square errors of the Stein 

(D=X'X)estimator applied to various types of conditioned 
data.

o*L /
/ /col .4 ; /

/

s ” ' /0, •01 I
«*r I

i 
i 
i
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

VECTOR LENGTH

ACTUAL CENTERED



www.manaraa.com

156

TABLE 5.20
The average mean square error of the estimates of a 2 of

the Stein (D=X'X ) estimator applied to various types of 
conditioned data.

R length centered and actual centered
normalized

1.934 0.10 0.108 0.257 0.108
7.734 0.20 0.209 0.456 0.209
30.94 0.40 0.391 0.566 0.391
69.6 0.60 0.487 0.592 0.487
123.7 0.80 0.535 0.601 0.535
193.4 1.00 0.561 0.606 0.561
278.4 1.20 0.576 0.608 0.576
379.0 1.40 0.586 0.610 0.586
495.0 1.60 0.592 0.611 0.592
626.4 1.80 0.597 0.611 0.597
773.4 2.00 0.600 0.612 0.600
1740 3.00 0.608 0.613 0.608
3094 4.00 0.610 0.613 0.610
4834 5.00 0.612 0.613 0.612

FIGURE 5. 15
The average mean square error of the estimates of

the Stein (D=X'X ) estimator applied to various typ
of

conditioned data.
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TABLE 5.21
The bias of the estimates of a of the Stein (D=X'X )

estimator applied to various types of conditioned data.
R length centered and actual centered

normalized
1.934 0.10 -0.146 -0.084 -0.146
7.734 0.20 -0.231 -0.068 -0.231
30.94 0.40 -0.241 -0.044 -0.241
69.60 0. 60 -0.199 -0.034 -0.199
123.7 0.80 -0.164 -0.028 -0.164
193.4 1.00 -0.138 -0.025 -0.138
278.4 1.20 -0.120 -0.023 -0.120
379.0 1.40 -0.105 -0.021 -0.105
495.0 1.60 -0.094 -0.020 -0.094
626.4 1. 80 -0.086 -0.019 -0.086
773.4 2.00 -0.079 -0.018 -0.079
1740 3.00 -0.057 -0.016 -0.057
3094 4.00 -0.045 -0.015 -0.045
4834 5.00 -0.039 -0.014 -0.039

FIGURE 5.16
The bias of the estimates of «2 of the Stein (D=X'X ) 

estimator applied to various types of conditioned data.
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TABLE 5.22
The estimated parameter values of the PC-Stein (D=X'X )

estimator applied to various types of conditioned data.

Parameter centered and actual centered
normalized

%

a2 
a3

“5 
*22 
2̂4 
*25 
*32 
*34 

*35 

*42 
*44 

*45 

*2 
*3 
*4 

*5 

*6 
*7 

*8 
*9 

*10 
*11 
*12 
*13

5.042 1.167 3.019
3.539 7.516 5.619
1.750 1.430 1.217
0.190 0.297 0.240
0.165 0.266 0.203
1.235 1.364 1.402

-0.101 0.438 0.278
-0.241 -0.232 -0.310
-0.441 -0.513 -0.562
-2.950 -3.847 -3.081
0.134 0.172 0.103
0.242 0.648 0.308
0.733 1.416 1.073

-0.254 -0.399 -0.306
-0.669 -0.779 -0.819
-0.087 -0.176 -0.066
-0.662 -0.362 -0.321
-0.824 -1.163 -0.905
-0.735 -1.135 -0.785
-0.615 -0.951 -0.769
-1.299 -1.643 -1.466
-1.662 -2.126 -1.892
-1.026 -1.519 -1.208
-1.430 -2.025 -1.614
-0.986 -1.573 -1.185
-1.046 -1.490 -1.217
-0.877 -1.201 -0.975
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TABLE 5.23
The average mean square errors of the PC-Stein 

(D=X'X)estimator applied to various types of conditioned 
data.

R length centered and actual centered
normalized

1.934 0.10 22.383 17.589 20.163
7.734 0.20 27.463 24.241 23.977
30.94 0.40 43.831 44.530 36.889
69.60 0.60 60.189 62.613 51.878
123.7 0.80 71.780 74.188 64.133
193.4 1.00 79.215 81.185 72.893
278.4 1.20 83.985 85.542 78.936
379.0 1.40 87.145 88.381 83.115
495.0 1.60 89.319 90.316 86.067
626.4 1.80 90.867 91.685 88.206
773.3 2.00 92.005 92.687 89.796
1740 3.00 94.802 95.134 93.769
3094 4.00 95.817 96.014 95.229
4834 5.00 96.294 96.426 95.918

FIGURE 5.17
The average mean square errors of the PC-Stein 

(D-X'X)estimator applied to various types of conditioned 
data.
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TABLE 5.24
The average prediction mean square errors of the

PC-Stein (D=X'X)estimator applied to various types of
conditioned data.

R length centered and actual centered
normalized

1.934 0.10 3.402 2.790 3.229
7.734 0.20 3.585 3.135 3.382
30.94 0.40 3.997 3.798 3.784
69.60 0.60 4.226 4.125 4.081
123.7 0.80 4.342 4.282 4.246
193.4 1.00 4.405 4.366 4.337
278.4 1.20 4.442 4.414 4.392
379.0 1.40 4.466 4.445 4.427
495.0 1.60 4.481 4.466 4.451
626.4 1.80 4.492 4.480 4.468
773.4 2.00 4.500 4.490 4.480
1740 3.00 4.519 4.515 4.510
3094 4.00 4.526 4.524 4.521
4834 5. 00 4.530 4.528 4.526

FIGURE 5.18
The average prediction mean square errors of the 

PC-Stein (D=X'X)estimator applied to various types of 
conditioned data.
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TABLE 5.25
The average mean square error of the estimates of oc2 of

the PC-Stein (D=X'X ) estimator applied to various types of 
conditioned data.

R length centered and actual centered
normalized

1.934 0.10 0.240 0.125 0.137
7.734 0.20 0.266 0.204 0.186
30.94 0.40 0.350 0.370 0.318
69.60 0.60 0.432 0.470 0.427
123.7 0.80 0.489 0.522 0.492
193.4 1.00 0.526 0.551 0.529
278.4 1.20 0.549 0.569 0.553
379.0 1.40 0.564 0.580 0.568
495.0 1.60 0.575 0.588 0.578
626.4 1.80 0.583 0.593 0.585
773.4 2.00 0.588 0.597 0.591
1740 3.00 0.602 0.606 0.604
3094 4.00 0.607 0.610 0.608
4834 5.00 0.609 0.611 0.610

FIGURE 5.19
The average mean square error of the estimates of o<2 of

the PC-Stein (D=X'X ) estimator applied to various types of 
conditioned data.
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TABLE 5.26
The bias of the estimates of « 2 of the PC-Stein (D=X'X)

estimator applied to various types of conditioned data.
R length centered and actual centered

normalized
1.934 0.10 0. 032 -0.118 -0.095
7. 734 0.20 0. 063 -0.205 -0.173
30.94 0.40 0.089 -0.256 -0.256
69.60 0.60 0.081 -0.228 -0.262
123.7 0.80 0.067 -0.194 -0.239
193.4 1.00 0.056 -0.166 -0.211
278.4 1.20 0. 047 -0.144 -0.187
379.0 1.40 0.040 -0.128 -0.167
495.0 1.60 0.034 -0.114 -0.151
626.4 1.80 0.030 -0.104 -0.137
773.4 2.00 0.026 -0.095 -0.126
1740 3.00 0.014 -0.068 -0.090
3094 4.00 0.008 -0.054 -0.071
4834 5. 00 0. 004 -0.046 -0.059

FIGURE 5.20
The bias of the estimates of a2 of the PC-Stein (D=X'X) 

estimator applied to various types of conditioned data.
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5.5 CONCLUSIONS.
1. When the equity estimator is applied to the original 

data, non-generated data, it yields similar estimates to 

those obtained via the ridge regression estimator. Both 
estimators give theoretically acceptable signs for most of 

the estimates.
2. From the Monte Carlo experiments, the performance of

the equity estimator judged by the MSE criterion is
extremely impressive but the equity estimator performs 
poorly under the PMSE criteria. Intuitively, this finding is 

not surprising. The nature of the equity estimator is that 
it trades biasedness for reduction in the variability of the 
parameter estimates. As a result, the predictability of the 

equity estimator is not very impressive.

3. The equity estimator estimates the parameter of
interest a^, the own discount effects, extremely well for

all vector lengths. Furthermore, the equity estimator shows 
similar characteristics to those of the ridge regression 
estimator. However, the equity estimator produces high bias 

when the vector length is very large which demonstrates the 
trade-off between biasedness and variability.

4. When the data are not conditioned, actual data, the 

equity estimator yields incorrect signs for most of the 

parameter estimates. Moreover, the equity estimator gives 
vastly different estimates for different type of conditioned 
data.
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5. The equity estimator does not perform well when 
applied to the actual data except when the vector length is 

small under both MSE and PMSE criteria.
6. The equity estimator estimates the parameter <*2 well 

based on the MSE criterion; however, the data have to be 

centered and normalized to unit length. Without centering 
and normalizing the data to unit length, the equity 
estimator performs well only if the length of the vector is 

small.
From the study, we learn that the equity estimator can 

produce satisfactory results. However, its performance is 
dependent heavily on the vector length. As the vector length 

increases, the bias appears to be increased proportionally 

which overshadows the gain by reducing the variability of 
the estimates at high vector length. Unlike its competitors, 

the MSE and PMSE of the equity estimator seem to have no 

boundaries. The trade off between biasedness and variability 

is evident when the equity estimator is evaluated under the 

prediction mean square error criteria. The equity estimator 
is by no means a good predictor. The choice of the weight 

matrix in the squared error loss function is very important 

to the performance of the equity estimator.

Moreover, we observe that the performance of the equity 
estimator depends on the conditioning of the data. Without 

proper data conditioning, the equity estimator yields high 

MSE and PMSE at high values of vector length compared to 

those of its traditional biased estimator alternatives. The
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MSE of the estimates of the parameter ag of the equity 
estimator obtained from utilizing the mean centered data or 

the actual data can be as high as 300 times the MSE obtained 
via the centered and normalized data. Consequently, the 

evidence does not support the claim that the equity 

estimator deals with the problem of multicoilinearity 

efficiently.
The Monte Carlo experiments indicate that the equity 

estimator performs well only when the degree of 
multicollinearity is substantially reduced by means of 

centering and normalizing the data. Contradictory to the 

equity estimator, the performances of the traditional biased 
estimator considered do not change as drastically as the 

performance of the equity estimator when different 
conditioned data are used even though the performances of 
the biased estimators examined can be improved through the 
selection of the data conditioning. Therefore, the use of 

the equity estimator adds another risk factor into the 

estimation process. The risk is that we do not know whether 

the data have been adequately conditioned so that the 

application of the equity estimator will produce 

satisfactoty results.
The dependency of the equity estimator on the 

conditioning of the data can be linked to the transformation 

of the matrix of exogenous variables. The equity estimator
transforms the matrix of exogenous variables by post

. . .  , - 1 / 2  . multiplying with the matrix (X'X) , Equation (4.28). We
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have shown that the equity estimator is biased and
inconsistent unless X'X = I, Section 4.6. When the data are 
conditioned, the degree of multicollinearity is reduced. In 
other words, the matrix X'X more closely resembles the 

identity matrix. As the data become better conditioned, the 

transformation becomes less drastic which reduces the 

biasedness and ,hence, improves the performance of the 

equity estimator. KR (1987) have dealt the problem of
biasedness by scaling the parameter estimates by the 
constant v, Equation (4.25). The Monte Carlo experiments 

show that this scaling technique does not rectify the bias 

problem especially when the vector length is high or when 
the data are not well conditioned. Overall, the equity
estimator must be used with caution. Its performance depends 

heavily on the size of the underlying parameters as well as 
the conditioning of the data. One significant conclusion is 
that the equity estimator does not solve the problem of

multicollinearity as claimed. For the equity estimator to 

perform well, the data must be moderately well conditioned 

which raises the question of how can we tell whether the 
data are well conditioned enough to be estimated by the 
equity estimator.
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CHAPTER 6
A CONFIDENCE INTERVAL FOR OUT-OF-SAMPLE PREDICTION 

WHEN USING BIASED PREDICTORS

6.1 INTRODUCTION
In this chapter we will construct confidence intervals 

for out-of-sample prediction when multicoilinearity is 

present and biased predictors are used. Least squares may 
not be a good predictor when the explanatory variables are 
linearly related. Biased estimators can be used as 
predictors in the presence of multicoilinearity. However, 

obtaining the confidence interval of the forecast values 

cannot be done in the usual way. Bootstrap re-sampling 

methods will be used to construct a reasonable confidence 
interval for the each of the prediction techniques under 

consideration.
In Section 6.2, we discuss the effects of 

multicollinearity on out-of-sample prediction. The effects 

are not fully understood. The conventional rule is that as 

long as the out-of-sample data have the same pattern of 

multicoilinearity as the in-sample data ,then 

multicollinearity is not a problem for prediction . However, 

it is very difficult to find a set of data that has the 

mentioned characteristic.
In Section 6.3, we discuss the use of biased estimators 

as predictors in the presence of multicollinearity. Several 

studies, have shown that some type of biased estimators can

167
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be used as predictors and improve on the out-of-sample 
performance of least squares. The biased estimators that we 

are going to study are described in Chapters 4 and 5. They 
are ridge regression and two Stein-like estimators.

In Section 6.4, we will discuss the bootstrap method. 

Using the bootstrap method will help us to construct the 
confidence interval for our forecasts from the prediction 

technique which we are considering. We use bootstrap to 

trace the distributions of the forecasted values which 
enable us to construct a reasonable confidence interval. 

Actual data will be used in order to empirically construct 
confidence intervals which will be carried out in Chapter 7.

6.2 THE EFFECTS OF MULTICOLLINEARITY ON OUT-OF-SAMPLE 
PREDICTION

Consider the model

y = X|3 + e (6.1)

where y is a (Txl) vector of observations on a dependent

variable, X is a fixed (TxK) full rank matrix of
observations of the exogenous variables, /3 is a (Kxl) vector 

of unknown parameters and e is a (Txl) vector of disturbance 

terms which are identically and independently distributed as 

N (0, o'2) .
We are interested in predicting an (mxl) vector of 

future values of y, yo/ which are related to XQ, a known
(mxK) matrix of future values of X.
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Consequently, yo can be expressed as

yn = Xfi + e (6.2)-0 O’- -0

where e ~ N(0, cr2I ) and E[e’e'] = 0.-o - m —0
Let 5 be an estimator of g. Similar to Chapter 4, we

consider the weighted squared error loss measure

L(§,6,D) = (5 - g)'D(6 - g) (6.3)

as a basis for evaluating estimator performance where D is a 
positive definite and symmetric matrix. The sampling 
performance of 5 is evaluated by its risk function

R(g,S,D) = e [(5 - g)'D (5 - g) (6.4)

As we are interested in the out-of-sample mean square 

error of prediction, the weight matrix that we wish to

consider is D = X'X so thato o

R(g,6,x;xo) = e [ ( 5  - g)'x;x(6 - g)

-  E[<Xo$ -  ” XoS)]

= e [ ( ? 0 -  E (yQ) ) '  (yQ -  E(y0) )J  (6.5)

The out-of-sample mean square error of prediction for 

the ordinary least squares estimator can be written as

R<i= E<y„>> - E[xoS - E<v0>]'[xoE - E<y0>] 
- E[v>? * e>]'[xo<b - §>]
= tr E[x0(b - g) (b - gl'xj

= tr X0E(b - g) (b - g)'X'
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« cr2tr X (X'XĴ X'

“ cr2tr(X'Xo) (X'X)-1 (6.6)

The effects of multicollinearity on the out-of-sample 

prediction of least squares is not fully understood, but it 
is known that the predictive performance of a regression 

equation can be adversely affected by multicollinearity. For 

example, see Askin (1982), Marquandt and Snee (1975) and 
Montgomery and Peck (1982).

From Equation (6.6), the prediction risk for least 
squares estimator depends on the cross-product matrices for 

XQ and X. We are going to decompose the out-of-sample 
prediction risk of least squares into several components.

Let us define X = [iT, XJ] and XQ = [î , X2] where iT 
and i are unit vectors of dimension T and m respectively.
X1 and X2 are the matrices of slope regressor which can be 

transformed into deviation from mean form as

We write the difference in the means of the X} and X2 

regressors as

The prediction risk in equation (6.6) can be written as

(6.4a)

X = M X = (I - i i'/m)X2 2 2 ID "’ID- IQ 2
»and (6.4b)

(6.7c)

R(Jo= xb,E(yo)) = <x2[t +
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= <r2[§ + tr(X*'X*) (X*'X*) 1 + md'(X*'X*)-1d]

-  rr2 rm- * |t + trP'P AP'P A'1 + md'P A_1P'd 1 2 2 2 1 1  ~  1 1 1 -
(6.8)

where X*'X* = P AP '  and X^X* = PAP'. P, and P„ are1 1  1 1 1  2 2  2 2 2  1 2

matrices whose columns are the characteristic vectors and At

and A2 are the diagonal matrices of characteristic roots of 
X*'X* and X*'X* respectively. Ai and Ag are arranged such

that A £ X ...a A f i = 1,2.1,1 1,2 i, K

The expression (6.8) decomposes the prediction risk

into several components. The least squares prediction risk
is directly related to a2, the precision of the population

regressor function. The least squares predictor is also

directly related to m, the number of out-of-sample
observations, and inverse related to T, the number of

in-sample observations. The expression (6.8) is also
affected by the matrices P and P which indicate the J 1 2
directions of the major and minor axes of the centered data
Xt and X2> Other factors which affect the expression (6.8)

are the matrices A and A which reflect both variation and1 2
multicoll inearity among Xj and X2, and the distance d which

♦
indicates the difference between the centers of the 
in-sample and out-of-sample regressors.

The data ellipsoids are rotationally equivalent if Pt = 
P2 so that P'P2 = I and they are variationally equivalent if 

At = A2. If the in-sample and out-of-sample data are

rotationally equivalent, equation (6.8) can be rewritten as
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R(y0= Xb,E(y0))A - 1 + md'P AjJP ■d] (6.9)

If the in-sample and out-of-sample data are both 
rotationally and variationally equivalent, the risk function 
reduces to

As we have shown, if the in-sample and out-of-sample 

data are similar enough or have the same pattern, which 
means that they are rotationally and variationally 
equivalent, prediction appears to have no serious risk.

Form Equation (6.10) we can see that the risk function 
also depends on the term d'Pi« If d = 0, the risk function 

becomes

If d * 0, the prediction risk is dependent on the

orientation and length of d relative to the axes of the X 

ellipsoid. Preferably, we want d'Pt = (c,0,...,0). Then the 
larger i is, the less the least squares prediction risk 
will be.

6.3 BIASED ESTIMATORS AS PREDICTORS

Several studies have discussed the use of biased 
estimators to deal with the problem of out-of-sample 

prediction in the presence of multicollinearity. For 

example, Copas(1983), Friedman and Montgomery (1985) and 

Jones and Copas(1986).

d (6.10)

R ( y =  Xb,E(yo)) = cr2[| + (K-l)J (6.11)
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Friedman and Montgomery (1985) showed that in the case 
of two dimensional space with severe multicollinearity, 
ridge regression and principal components estimator can have 

lower mean square error of prediction than that of least 

squares. They worked with the orthogonalized model

y = Za + e

where Z = XP, a = P'/3 and P is the (KxK) orthogonal matrix 
of eigenvectors associated with the eigenvalues of X'X. 
Providing that a2 is not too large relative to its standard 

error or the model error measured by <x2, ridge regression 

and principal components estimator will allow reductions in 
mean square error over least squares. In general, ridge 

regression is a superior predictor if the prediction is in 
the direction of the less stable regressor. If the 
prediction is in the direction of the more stable regressor, 

principal components estimator is superior. The choice of 

the techniques, hence, depends of the region of the 

regressor space over which prediction will be made and the 

degree of multicollinearity.
Copas (1983) considered the out-of-sample prediction 

under the assumption that the future centered regressor, XQ, 

come from a distribution with the same mean and covariance 

as the in-sample centered regressor variables matrix X. The 
model considered is

y|x ~ N(a + /3'x,<r2)
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where y is an observed response or dependent variable and x 
is a vector of p observable predictive factors or 
independent variables. Let V = T_1 (X'X) where T is the

sample size and the least squares predictor be denoted as
A A Ay = a + /3' x

A  i  Awhere jS = (X'X) X'y and a = y. The shrinkage predictor is 

of the form

y = a + K/3'x 

where the index of shrinkage K is defined as

K = £'V§ / §'V|8

The denominator of K is on the average larger than the 

numerator; thus, the expectation of K is less than one. K = 
1 indicates no shrinkage and small K indicates substantial 

shrinkage. For a given number of dependent variables p, the 

distribution of K depends on a quantity 5 given by

S2 = cr2/ T§'VjS

The distribution of K becomes more concentrated about K 

= 1 as S2-» 0. K is likely to be small if p is not small 

relative to the sample size T and/or the signal to noise 
ratio measured by p'Vfi/cr2 is small. The constant K is 

estimated by

K(k) = 1 - a2k/TQ'VQ
A  o  A  Awhere cr = (y - X£)'(y ~ X§) . The shrinkage predictor

considered is of the form
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y = a + K/3' x

The overall prediction mean square error is less than that 
of least squares if

0 < k < 2 <P° K  1 +  2 / V

where v = T-p-1. Copas showed the value of k = p-2 always 

gives lower prediction mean square error than that of least 

squares provided that v > 2 which yields the usual
Stein-rule.

Jones and Copas (1986) examined a more general case of 

prediction. Using the same model as in Copas(1983), they 

assume that the future regressor, XQ, comes form a 

distribution with mean u and variance V and define A = V— o o 0 0

+ nouo' . They define a region in which the Stein-like
shrinkage predictor dominates the least squares predictor 

for all values of and cr2. The region is defined as

w < 2 trV_1A / (p + 2)max 0

where w is the largest eigenvalue of V_1Aq . The

differences between V and A are measured by the ratio ofo J

the largest eigenvalue to the trace of V-1Aq. The ratio

reaches its minimum of 1/p when V = Aq and 1/p < 2 (p + 2)

for all p s 3.
Fomby and Hill (1986) considered the traditional model 

as in the Equation (6.1). They showed that for the usual 

Stein rule estimator that shrinks all parameters toward the
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origin

b'X'Xb'

where s = (y - Xb)' (y - Xb) and b is the least squares 

estimator, the prediction mean square error of such a 
predictor is less than that of ordinary least squares for

all /3 and o-2 if

a * 2T-K+2
tr X-X0(X-X)-‘ 2

Amax
where A is the largest characteristic root ofmax

X^XQ (X'X) 1. Thus, the necessary conditions

tr X'X fX'X)-1
A < ---- ^ ------max ^

All of the studies cited point out that the 
performances of the biased predictors are dependent on the 

unforeseen future values of the regressor. Friedman and 

Montgomery (1985) showed that ridge regression and principal 
components estimator may improve upon the out-of-sample mean 

square error of prediction of least squares for a certain 

range of parameter space. The choice of predictor depends of 
the direction of the prediction space.

Copas (1983), Jones and Copas(1986) and Fomby and Hill 

(1986) showed that the predictability of the Stein-like 

predictor is based on the similarity between the in-sample 
and out-of-sample data. Consequently, we can use the biased 

predictors as alternatives of least squares in the presence 

of multicollinearity.
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6.4 BOOTSTRAP
6.4.1 BOOTSTRAP METHOD

Bootstrap is a computationally intensive method which 

attempts to determine the characteristics of the 

distribution of a random variable by using its observed 

values. Efron (1979) viewed the bootstrap method as a 

nonparametric method of estimating the bias and variance of 
a statistic of interest.

Let X be a random sample of size T with a complete 

unspecified probability distribution F, ie.

X! - Xl Xl~»n-P i = l,2,..,T

where X = (X^, X2, ... ,XT) denotes the random sample and x = 
(xt, x2, ...xt) denotes the observed values. We are
interested in the distribution of a specific parameter such 
as the mean or standard deviation of F. Let the parameter of 

interest be denoted as 0(F) and t(X) be an estimator of 

0(F). The sampling distribution that we are interested in is 

of the random sample

R(X,F) = t(X) - 0(F)

The bootstrap method for the one-sample problem can be 

described in 3 steps.
1. Construct the sample probability distribution of x,

A

namely F.
A

2. Draw a sample of size T from F with replacement and 

calculate an estimate of 0(F). We call this a bootstrap 

sample which can be repeated.
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3. Approximate the sampling distribution of R(X,F) by 

the distribution of the bootstrap sample.
Efron (1979) indicated that the accuracy of the 

approximation of the distribution of R(X, F) depends on the 

form of R. The Monte Carlo experiment sampling technique can 

also be applied to the bootstrap method by repeating step 2 
for N times and use the resulting histogram as an 

approximation to the distribution of the bootstrap 

estimator.
Bickel and Freedman (1981) provided the proof of some 

asymptotic theories for the bootstrap method. They showed
A

that the resampling by Efron (1979) from F converges in 
conditional probability to the true variance-covariance 
matrix of Xi. Freedman (1981) extended the asymptotic 

theories to be applied to regression equation.

Consider the model

y = X§ + e

where y is a (Txl) vector of observations on a dependent 

variable, X is a fixed (TxK) full rank matrix of 

observations on exogenous variables, 0 is a (Kxl) vector of 
unknown parameters and e is a (Txl) vector of unobservable 

disturbance terms. Let b be the least squares estimator of
A

0, then the observed column vector of residuals e is given 

by

e = y - Xb

Let e* be a (Txl) vector of resampling with replacement of
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A  £

the elements of the vector of centered residuals e, y be a 
(Txl) vector of dependent variable generated by

y* = Xb + e* (6.12)

We estimate Equation (6.12) by least squares and obtain
A  0an estimate for b, /3 . We want to characterize the

1/2distribution of (b - /3)T by using the distribution of 

(£* - b) T1/2 as an approximation. This approximation is
likely to be good if T is large and <r2tr (X'X)-1 is small.

* • •Notice that e is a vector of centered residuals, without
• A * 1/2 . centering the distribution of (/3 - b)T incorporates a

bias term which is random and has nondegenerating normal
distribution and hence does not approximate the distribution
(b - /3) T1/2. If the matrix (X'X) is in the form of

Acorrelation matrix e need not be centered for it is 

orthogonal to the matrix X.

Efron (1981) used the bootstrap method to calculate the 
standard deviations of the Pearson correlation coefficient. 
He discovered that the bootstrap performs best among the 
non-parametric methods such as Jackknife, half-sample and 

random subsampling. Efron (1982) extended his study of the 
comparison of the performances of the bootstrap and other 

non-parametric methods. The method that we are going to 
focus on is the percentile method for assigning approximate 
confidence intervals to any real valued parameter 0(F) based

A  A

on the bootstrap distribution of 0 = 9(F). Let
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CDF(t) = Prob<(0 s t) 

be the distribution function of the bootstrap distribution
A f  Aof 8 the estimated value of 0 obtained from the bootstrap 

sample. If the bootstrap distribution is obtained by the
A  A *

Monte Carlo method, the CDF(t) is approximated by (#8 s 

t)/N; N is the number of the Monte Carlo samples. We define 
the lower and upper bound values of the confidence interval

Aof 8 as

0L(a) = CDF"1 (a/2), ^  = CDF_1(l-a/2) 

where a is the level of significance. Consequently, an
A

approximate (1-a) central confidence interval for 8 is 

[0L(a),eu(«)].
Freedman and Peters (1984a) studied the performances of 

the bootstrap method in the generalized least squares 
context. They also outlined how the bootstrap method can be 

used to examine an estimator's forecasts distribution. 

Freedman and Peters (1984b) estimated the standard errors 

for regression coefficients obtained by constrained 

generalized least squares with an estimated asymptotic 

covariance matrix via the bootstrap method. They found that 

the standard deviations of the bootstrap estimates are 

larger than the estimated asymptotic standard errors. 
Moreover, the bootstrap estimates of standard errors are 

closer to the true values than the conventional asymptotic 

approach. Still, the bootstrap estimates of standard errors 
are biased downward.
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Freedman and Peters (1985) demonstrated the use of the 
bootstrap method to find the out-of-sample forecasts 
standard errors and to select between alternative mode 
specifications in the context of a dynamic energy demand 
model. They had shown that the bootstrap standard errors are 

more reliable than those obtained through the asymptotic 

methods. Efron (1987) studied the setting of approximate 

confidence intervals for a real valued parameter. He 
considered a method called biased corrected method. This 
method corrects the biasedness in the percentile method to 

achieve second order correctness which makes the CDF of 
bootstrap distribution complete. For an application see 

DiCiccio and Tibshirani (1987).

6.4.2 CONFIDENCE INTERVALS FOR FORECASTS
We are interested in constructing confidence intervals 

for the out-of-sample forecasts obtained from the biased 
estimators described in chapter 4. Consider the Equation 

(6 .1)
y = X/3 + e

Let 6 be an estimator of /3. The residuals are defined as

e = y - X5

Let e* be a (Txl) vector of disturbance terms obtained by 

the resampling with replacement the elements of e. We 

construct a bootstrap sample by the relationship

y* = XS + e* (6.13)
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From equation (6.13), we reestimate 5 to obtain 8*. 

Then, we use 5* as a predictor by
A «y = X 8 -o o-

where XQ is previously defined. For simplicity, we assume 

that XQ is a (IxK) dimension matrix. Repeating the procedure 
N number of times to get N values of forecasts. We use the N 

forecast values to construct a histogram for the 
distribution of the bootstrap estimates. The confidence 
interval is constructed by the percentile method. Suppose 

that we wish to construct a confidence interval with the
A

level of significance a. The lower boundary yQL is defined 

as
A  A

<#V  yoJ = (a/2) (6.14a)
N

where (#yQ- yQL) is the number of forecasts that are less
A A

than or equal to yQL. Similarly the upper boundary Youis 

defined as

(#y0s you) 2- = (l-a/2) (6.14b)

A  A

The approximated confidence interval is [y ,y ].
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CHAPTER 7
THE BOOTSTRAP CONFIDENCE INTERVALS FOR OUT-OF-SAMPLE 

PREDICTION IN THE PRESENCE OF MULTICOLLINEARITY 

USING BIASED PREDICTORS

7.1 INTRODUCTION.
In this chapter, we use the bootstrap sampling 

technique to construcy the confidence intervals for 
out-of-sample predictions when multicollinearity is present 
and biased predictors are . The biased predictors of 
interest are the traditional biased estimators outlined in 
Chapters 4 and 5. They are simple ridge regression and two 

Stein-like estimators. As we have indicated in Chapter 6, 

the confidence intervals for the forecast values of these 
biased predictors cannot be acquired in the usual way. 
Consequently, we use the bootstrap re-sampling method to 
construct reasonable confidence intervals of the forecasts.

The outline of the chapter is as follows: Section 7.2, 

we portray the in-sample and out-of-sample data used in our 
study and describe the nature of multicollinearity in the 

data. In Section 7.3, we use our predictors obtained from 

the in-sample data to make out-of-sample forecasts. Then we 

perform a bootstrap re-sampling algorithm on each of the 
predictors to construct reasonable confidence intervals at 

various levels of confidence for their forecasts values. In 

addition, we construct confidence intervals for the least 

squares predictor to be used as a benchmark.

183
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7.2 DATA DESCRIPTION.
The data that we use in this chapter is the price 

promotion data used in Chapter 5. Again, we use the price 
promotion model in Equation (5.18) to explain the unit sales 
of a major brand canned tuna as a function of its own price, 
the prices of its competitors, discounts and types of 

advertising being used. The data contains 52 store weeks of 

data for a chain store.
In order to perform out-of-sample prediction, we divide 

the data into two groups, in-sample data and out-of-sample 
data. The in-sample data is composed of the first 48 store 

weeks of data. We use the remaining 4 store weeks of data as 

the basis for out-of-sample predictions.
We apply three multicollinearity diagnostics to the 

in-sample data and list the findings below.

1. Simple Correlations among Regressors.
Severe col linearity is said to be present when a 

correlation coefficient exceeds 0.8. By examining pair-wise 

correlation coefficients between the explanatory variables 

(omitting the intercept term), we detect correlation between 
the variable I (the dummy variable indicating displayD I S M A D 3

and major ad campaign for brand #3) and d 3 (the price 
discount variable for brand #3) having the correlation 

coefficient equal to 0.84.
2. Determinant of (X'X).
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We center and normalize to unit length the matrix of 
exogenous variables X before computing the determinant. If 
the determinant is 0, then one or more exact linear 
dependencies exist among the columns of X. If the 
determinant is 1, then the columns of X are orthogonal. The 

determinant of the centered and normalized to unit length 

matrix X'X is 1.636E-8 which indicates that there exist 

certain linear dependencies among the exogenous variables.

3. Matrix Decompositions.
We calculate the condition numbers for the matrix X'X 

when the matrix X is un-condit ioned, mean centered and 

centered and normalized to unit length. For the 
un-conditioned X matrix, we also include a column of ones 

for the intercept parameter. The condition number associated 

with the eigenvalue A. is defined as the square root of the 

ratio Ai/Aj, i = 1,2,... ,K. The condition numbers are
presented in Table 7.1. Pertaining to the reported 

eigenvalues, we can deduce that by mean centering and 

centering and normalizing to unit length the exogenous 

variables we can eliminate the multicollinearity problem to 

a certain extent. The reasons for the decrease in the degree 

of multicollinearity by centering and centering and 

normalizing to unit length are given in Chapter 5.
As indicated in Section 6.2, if the in-sample data and 

out-of-sample data are similar enough or have the same 
pattern, so that they are rotationally and variationally 
equivalent, least squares prediction seems to have no
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The condition 
transformed data.

actual

1.000 
3.011 
3.067
3.110 
4.004 
4.764 
4.998 
5.341 
5.495 
5.630 
5.664 
5.722 
5.859 
6.778 
7.559 
8.280 
9.375

11.312 
13.273 
14.324 
19.911 
26.801 
38.903 
42.771 

100.103 
255.285

TABLE 7.1
numbers for

centered

1 . 0 0 0

1.049
1.073
1.364
1.653
1.734
1.853
1.907
1.952
1.961
1.985
2.033
2.351
2.635
2.837
3.248
3.924
4.605 
4.881
6.605 
8.916

13.496
14.823
34.624
66.713

the untransformed

centerd and 
normalized
1.000 
1.219 
1.252 
1.308 
1.420 
1.541 
1.641
1.653 
1.737 
1.794 
1.812 
1.858
2. 135 
2.263 
2.455 
2.669 
3.415 
3.447 
4.206 
4.627 
5.171
7.110 
8.486

11.097 
26.185

and
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serious prediction risk. The data ellipsoids of the 
in-sample and out-of-sample data are rotationally equivalent 
if Pj'P2=IK and are variationally equivalent if Ai = A2, the

matrices P  , P  , A and A are defined in Chapter 6. We find1 ' 2 1 2
little rotational equivalence or variational equivalence

between the in-sample and out-of-sample data. Consequently,
there appears to be little similarity between the in-sample

and out-of-sample data that we use. Therefore, the least

squares predictor may suffer large forecast variability.
The rotational equivalence between the in-sample and

out-of-sample data are evaluated by the determinant of
(I-P'P2). If the in-sample and out-of-sample data are

rotationally equivalent, det (I-P'P2) is equal to zero. For

this study, the determinant has the value of -8.12e-18 which

suggests near rotational equivalence between the data.
However, by observation, the product P'P2 is far from
resembling an identity matrix. Furthermore, the eigenvalues

of P'P2 indicate severe collinearity among the column

vectors. It appears that the determinant criteria used is

too rough a measure of estimating rotational equivalence.

Moreover, the measure relies on the matrix (I-P'P ) to be a12
null matrix when there is rotational equivalence and yield 
zero determinant. A matrix need not be a null matrix to have 

zero determinant; for instance, a singular matrix. The 

determinant of (I-P'P2) ought to be used along with other 
evaluation criteria to determine rotational equivalence.

The variational equivalence between the in-sample and
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out-of-sample data are evaluated by the trace of (I-A^"1) . 
If the data are variationally equivalent, then tr(I-A^”1) 
is equal to zero. The calculated trace for this study is 
25.748 indicating no evidence of variational equivalence 

between the in-sample and out-of-sample data.

7.3 BOOTSTRAP CONFIDENCE INTERVALS.
7.3.1 THE CONFIDENCE INTERVALS.

When biased predictors are used to make out-of-sample 
forecasts, we cannot construct the confidence intervals for 

the forecast values in the usual way. As a consequence, we 

use the bootstrap re-sampling technique to assist in 

constructing reasonable confidence intervals.
As outlined in Section 6.4.2, in order to perform 

bootstrap re-sampling, we have to create N samples of the 

vector of disturbance term, namely e*. Suppose that N is 

equal to 1,000. Consider the equation

y = XjS -f e (7.1)

where y is a (T^K) vector of observations on a dependent 
variable, X is a fixed (T^K) full rank matrix of 

observations on the exogenous variables, p i s  a (Kxl) vector 

of unknown parameters and e is a (T^l) vector of 
disturbance terms which are identically and independently 

distributed as N(0,cr2) . In this study, the matrix X and the 
vector y represent the in-sample data set; hence, = 48.

Presume that we perform bootstrap re-sampling technique
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on the least squares predictor. Initially, we apply least 
squares to Equation 7.1. Let b be the least squares 

estimator of £

b « ( X ' X ) ' V y  . ( 7 . 2 )

AThe vector of residuals e is defined as

e = y - Xb . (7.3)

We obtain a thousand samples of disturbance vector e* 

by sampling with replacement the elements of the vector of
A  Aresiduals e. In selecting the elements of e, we have to 

ensure that each elements has equal opportunity of being 
selected to assure randomness. Therefore, we select the the

Aelements of e by using a uniform random number generator 
with range [0.5,48.5]. The generated random numbers are then

A
rounded off to the nearest integer. The rows of e are chosen 
in correspondence with the integers. We generate a thousand 

samples of the vector e*(Txl) .
With the samples of e°, we construct samples of vector 

of observations on the dependent variable by

y* = Xb + e* . (7.4)

We estimate Equation (7.4) via least squares and obtain 

a thousand vectors of b where

b* = (X'X)_1X'y* . (7.5)

Note that the estimator applied in this stage must be the 

same as the one applied to Equation (7.2). Let XQ be a 

(TgxK) matrix containing the out-of-sample observations on
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the endogenous variables; hence, Tg = 4. We use the
estimator b* to make forecasts based on the XQ matrix. Let 
y denote a (T xl) vector of forecast values; thusip 2 '

v = Xb* . (7.6)ip 0-

From Equation (7.4), we have a thousand predictions for

each of the four periods under study. The resulting

forecasts are sorted from minimum to maximum. Suppose that
we wish to construct a confidence interval with 99% level of
confidence for the forecasts of week 49 of the least squares

predictor, we use the 6-th lowest forecast value as the
lower boundary and the 6-th highest forecast value as the

upper boundary.
For the confidence intervals with 95% and 90% level of

confidence, we use the 26-th and 51-th lowest and highest
forecast values as the lower and upper boundary,
respectively. We follow similar process in constructing
confidence intervals for the ridge regression, Stein (D=I),

Stein (D=X'X ), PC-Stein (D=I) and PC-Stein (D=X'X ) ' d d  d d
predictor.

Let 5 denote a biased estimator; then, the vector of 

residuals e is defined as

e = y - X5

Similar to the case of least squares predictor, a thousand 

samples of disturbance vectors of e* are obtained by 

sampling with replacement the elements of using uniform 

random number generator. With the vectors e , we construct
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samples of vector of observations on the dependent variable 

by

Y = X<5 + e

Then we estimate y* via the same estimation technique as 5
* •to obtain a thousand vectors of 5 . We use 5 to make 

out-of-sample forecasts based on the matrix XQ; ie.

Y„ = xn5*4 p 0-

The confidence intervals for the forecast values are 
constructed in the same manner as those of the least squares 

predictor described earlier.

7.3.2 BOOTSTRAP SAMPLING RESULTS.
In Table 7.2, we present the parameter estimates 

obtained from applying the least squares, ridge regression, 
Stein (D=I), Stein (D=X^Xd) , PC-Stein (D=I) and PC-Stein 

(D=X'X ) estimator to the in-sample data. The derivation ofD D

each of the estimators and the abbreviations used are 

outlined in Chapter 5. For the PC-Stein estimators, we use 

the same elimination rule as in Chapter 5. We disregard the 
n smallest eigenvalues of the matrix X^XD that contribute in 

total merely about 5% of the total variation. The number of 

restrictions is 10.
From Table 7.2, we find that only the ridge regression 

estimator gives the correct signs for most of the parameter 

estimates associated with the own price variable (negative 

sign), the own discount variable (positive sign) and the
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TABLE 7.2
The estimated parameter values of the equity estimator

and its alternatives.

Parameter Ridge Stein PC-Stein OLS

ao 9.449
a1 -1.241
«2 1.461

a3 0.381
a4 0.267
“s 1.403
2̂2 0.480

*24 -0.340
025 -0.550
032 -3.102
034 0.189
035 0.330
042 0.710
044 -0.395
045 -1.080
^2 -0.122

-0.117
04 -0.419
05 -0.347
06 -0.057
07 -0.550
08 -0.899

09 -0.236

010 -0.558

011 -0.056
012 -0.464

(d =x ;xd) <D= W
1.828 2.421 0.728
6.927 6.319 8.177
1.166 1.164 1.376
0.283 0.293 0.334
0.199 0.199 0.235
1.238 1.434 1.462
0.739 0.629 0.872

-0.292 -0.361 -0.344
-0.626 -0.700 -0.739
-3.634 -3.377 -4.289
0.138 0.100 0.163
0.635 0.421 0.750
2.872 2.611 3.390

-0.448 -0.399 -0.529
-1.349 -1.327 -1.592
-0.262 -0.148 -0.309
-0.467 -0.390 -0.551
-1.109 -0.993 -1.309
-1.042 -0.855 -1.230
-1.051 -0.918 -1.240
-1.620 -1.601 -1.912
-2.033 -2.063 -2.400
-1.410 -1.318 -1.665
-1.888 -1.744 -2.228
-1.483 -1.362 -1.750
-1.730 -1.642 -2.042



www.manaraa.com

193

competitors' promotion variables (negative sign). The only 
exceptions are the parameters estimate associated with the 
variables I and is the dummy variableDIS3 D I S M A D 3  D I S 3

indicating the use of display only promotion campaign for 
brand #3 and I is the dummy variable indicating theDISMAD3

display and major ad promotion campaign for brand #3, which 

have positive signs. Furthermore, we find that the estimates 
of the Stein (D=I) and PC-Stein (D=I) estimator are 

identical to those obtained via the least squares estimator. 

We also find that the parameter estimates obtained from the 

Stein (D=X'X ) and PC-Stein (D=X'X ) closely resemble thoseD D  D D

obtained from the least squares estimator. The reason why 
the PC-Stein (D=I) and Stein (D=I) estimator yield identical 
results to the least squares estimator is the same as in 

Chapter 5, a being zero.' max

In Table 7.3, we present the values of the exogenous 
variables used in our projections. In Table 7.4, we report 

the bootstrap confidence intervals of the variable In st for 

week 49 obtained via various predictors. The use of ridge 

regression predictor produces the least variability while 

the PC-Stein predictor produces the least predicted mean 

square error. However, we note that the 99% confidence 
interval of the ridge regression predictor is the only 
confidence interval of the ridge regression predictor that 

contains the actual value. From Figure 7.1, we observe that 

the predicted values obtained from the ridge regression 

predictor are compactly distributed around the peak. The
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TABLE 7.3
The out-of-sample exogenous variables

Parameter variables week 49
1.060

a2 d! 0.170
a3 IMAD1 0.000
a4 ^DISl 0.000

“ S ^DISMADl 0.000

*22 d 2 0.302

^24 ^DIS2 1.000

*25 *DISMAD2 0.000

*32 d 3 0.178

*34 ^DIS3 0.000

*35 ^DISMAD3 0.000

*42 d 4 0.230

*44 ^DIS4 0.000

*45 I DISMAD4 1.000

week 50 week 51 week 52
050 1.040 1.060
124 0.106 0.208
000 0.000 0.000
000 0.000 0.000
000 0.000 0.000
255 0.283 0.264
000 0.000 0.000
000 1.000 0.000
149 0.149 0.149
000 0.000 0.000
000 0.000 0.000
113 0.113 0.103
000 0.000 0.000
000 0.000 0.000

1
0
0
0
0
0
1
0
0
0
0
0
0
0
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TABLE 7.4
The ln(si) forecasts of week 49 obtained from the 

predictors, (actual value =7.336)
LS Ridge Stein PC-Stein

(D=X'Xd) <D= W
Average 7.974 6.583 7.969 7.741
Std. 0.647 0.349 0.616 0.573
Max 9.717 7.626 9.703 9.387
Min 6.068 5.385 6.084 6.082
Med. 7.990 6.593 7.981 7.7 25
Pmse 0.825 0.689 0.780 0.492
99% [6.314, [5.636, [6.406, [6.322,
confidence 9.499] 7.543] 9.422] 9.185]
95% [6.706, [5.879, [6.756, [6.622,
confidence 9.254] 7.224] 9.148] 8.926]
90% [6.835, [6.001, [6.885, [6.765,
confidence 9.022] 7.141] 9.010] 8.694]

FIGURE 7.1
The distribution of the forecast of ln(sj) (week 49).

CM

CO

or
CM

CD

-— | i i . . 1 - ^ 1  i ... i j   1

5.0 5.5 6.0 6.5 7.0 .7.5 8.0 8.5 9.0 0.5 10.0
o

MIDPOINT
Ls ----  Ridge Stein   PC-Steln



www.manaraa.com

196

predicted values obtained from the least squares, Stein 

(D=X^Xd) and PC-Stein (D=X^Xd) predictor are dispersed with 

similar characteristics.
From Table 7.5, we find that the ridge regression 

predictor offer the predicted values of In st for week 50 
with the most precision. The PC-Stein (D=X^Xd) , Stein 
(D=X'Xd) and least squares predictor yield the predicted

values with almost identical distributions , Figure 7.2. 

However, the PC-Stein (D=X'X ) and Stein (D=X'X ) predictor' ' D D D D

produce predicted values that are more accurate than those 
of the least squares predictor and ,hence, yield confidence 

intervals with smaller ranges.
From Tables 7.6-7.7 and Figures 7.3-7.4, we observe 

that the ridge regression predictor gives the predicted 
values with the least variability for week 51-52 and, as a 
consequence, produces the confidence intervals with the
smallest ranges. Once again, the PC-Stein (D=X^Xd) and Stein 

(D=X^Xd) predictor produce the predicted values with similar 

characteristics to those of the least squares predictor. 
However, the PC-Stein (D=X^Xd) and Stein (D=X^Xd) predictor

still improve upon the least squares predictor by providing 

smaller prediction mean square error and variability. 

Overall, the ridge regression predictor yields the predicted 
values with the most accuracy which becomes increasingly 

evident as we further forecast into the future. The PC-Stein 

(D=X'Xd) , Stein (D=X'Xd) predictor offer predictions with 
less variability than those of the least sqares estimator.
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TABLE 7.5
The ln(si) forecasts of week 50 obtained from the

predictors, (actual value = 7.286)
LS Ridge Stein PC-Steii

(D=X'XD) (d =x ;xd)
Average 9.116 7.484 8.847 8.637
Std. 0.617 0.240 0.586 0.557
Max 11.085 8.562 10.632 10.302
Min 7.139 6.478 6.569 6.625
Med. 9.116 7.469 8.834 8.612
Prose. 3.729 0.097 2.781 2.136
99% [7.615, [6.876, [7.314, [7.289,
confidence 10.522] 8.214] 10.316] 10.059]
95% [7.956, [7.047, [7.696, [7.634,
confidence 10.316] 8.038] 9.993] 9.742]
90% [8.129, [7.131, [7.908, [7.766,
confidence 10.168] 7.886] 9.778] 9.622]

FIGURE 7.2
The distribution of the forecast of ln(si) (week 50).
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TABLE 7.6
The ln(si) forecasts of week 51 obtained from

predictors, (actual value = 7.263)
LS Ridge Stein PC-Stein

(d -x ;x d) <D= W
Average 8.638 7.356 8.483 8.266
Std. 0.541 0.220 0.517 0.487
Max 10.485 8.410 10.195 10.130
Min 6.856 6.619 6.676 6.690
Med. 8.647 7.340 8.483 8.242
Prase. 2.182 0.057 1.755 1.244
99% [7.368, [6.740, [7.232, [7.212,
confidence 9.939] 7.999] 9.732] 9.468]
95% [7.645, [6.951, [7.511, [7.408,
confidence 9.723] 7.781] 9.428] 9.207]
90% [7.756, [7.016, [7.645, [7.484,
confidence 9.543] 7.712] 9.345] 9.092]

FIGURE 7.3
The distribution of the forecast of ln(sj) (week 51)
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TABLE 7.7
The lnfs^) forecasts of week 52 obtained from

predictors, (actual value = 7.672)
LS Ridge Stein PC-Steii

(d =x ;x d) (D=x;xo)
Average 9.620 7.864 9.234 9.124
Std. 0.629 0.249 0.601 0.566
Max 11.528 8.860 11.013 10.910
Min 7.798 7.044 7.077 7.389
Med. 9.629 7.840 9.231 9.122
Pmse. 4.189 0.099 2.801 2.429
99% [8.083, [7.245, [7.716, [7.771,
confidence 11.092] 8.673] 10.647] 10.531]
95% [8.332, [7.409, [8.045, [8.051,
confidence 10.859] 8.431] 10.391] 10.297]
90% [8.614, [7.496, [8.223, [8.195,
confidence 10.691] 8.308] 10.189] 10.066]

FIGURE 7.4
The distribution of the forecast of ln(si) (week 52)
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The next issue to be addressed is how well do the 
bootstrap confidence intervals represent the actual 
confidence intervals. Unlike the biased predictors that we 

considered, the covariance matrix for the prediction error 

of the least squares predictor can be calculated. The 
covariance matrix of the least squares predictions is 

defined as

This relationship indicates that the prediction variability 

of the least squares predictor is composed of (a) the 
equation error eQ and (b) the error in predictinq the 
parameters /S. From Equation (6.2), the random variable yQ is 
expressed as

the matrix X . Then, the forecast value associated with x' o -o

y = X /3 + e*0  0 -  -0

where e ~ N(0, cr2I ) and E[ee '] = 0. Let x' be a row of-0 — T2 --0 -0

is yQ = x^b which has its variance equal to cr2(x̂  (X'X) _1x q 

+1). Consequently, the random variable
x' b - y
- o  - J o
cr(x;(X/X)-1x+1)1/2
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is distributed as a standard normal random variable with 
mean 0 and variance 1. It follows that the random variable

is distributed as a t random variable with T-K degree of 
freedom; <x2 = (y - Xb)' (y - Xb)/ (T-K) . The confidence

interval is, therefore, established by

We use the relationship in Equation (7.8) to construct the 
prediction confidence intervals for the least squares 
predictor at various levels of confidence. The results are 

reported in Table 7.8a.
In order to evaluate the appropriateness of the 

bootstrap confidence intervals of the ridge, Stein and 

PC-Stein predictors, we utilize the Monte Carlo Experiment. 

Using the parameter values from the last column of Table 
5.2, 400 Monte Carlo samples are generated. The disturbance 

terms are generated from a standard normal distribution. For 

each Monte Carlo sample, we construct 95% bootstrap 

confidence intervals for periods 49-52 forecasts; the number 

of bootstrap samples used is 200. This procedure is designed 

to test the method that is used to construct the confidence 

intervals. If the constructed confidence intervals

x„b - yn- o - o___________
r(x^(X'X)'1xo+l)1/2

Pr s t  s t(T-K, a/2) (T-K) (T-K, a/2)

or Pr^x'b - t (T-K, a/2)a(x;(X'X)_1xo + l)1/2s

y_ * x'b + t0 -  0 - (T-K, a/2)<y(x' (X'X)_1xo +1)1/2 = 1-a . (7.8)
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TABLE 7.8a
The calculated true confidence intervals of the least 

squres predictors.

period 90% confidence 95% confidence 99% confidence

49 [6.200,9.714] [5.832,10.110] [5.064,10.878]
50 [7.420,10.799] [7.069,10.151] [6.336,11.884]
51 [7.130,10.136] [6.818,10.449] [6.166,11.101]
52 [7.891,11.351] [7.531,11.711] [6.780,12.461]

TABLE 7.8b
The percentage of time that the bootstrap confindence 

intervals contain the actual forcast values (level of 
confidence is 95%).

period ridge Stein(D=X^Xd) PC-Stein(D=X^Xd) LS
49 99.75 99.50 100.00 94.25
50 100.00 99.25 100.00 94.50
51 100.00 99.75 100.00 95.00
52 100.00 99.25 100.00 96.25
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reasonably represent the true confidence intervals, we 
expect roughly 95% of the times the constructed intervals 
contain the actual forecast values.

From Table 7.8b, we discover that the bootstrap 
confidence intervals contain the 'true' forecast values more 
often than expected for the biased predictors. This seems to 
be the result of the overestimation of the forecast 

variability of the bootstrap. The larger the estimated the 
forecast variability is, the larger the confidence intervals 

become. As a consequence, the constructed confidence 

intervals often contain the actual forecast values more than 

they should. However, the bootstrap is still a useful tool 
to construct confidence intervals for biased predictors 

which previously are unknown.
Now, we forecast the values of In Sj along the own 

discount variable, dj. We are presuming the role of the 

management of the target brand emphasizing price discount 

promotion campaign. The assumption is that the competitive 

brands maintain the discount rates and promotion campaign as 

in week 49 which are assumed to be known throughout the 

analysis. By this assumption, the out-of-sample exogenous 
data used is non-stochastic. The rates of discount used are 

0.0, 0.1, 0.2, 0.3, 0.4 and 0.5. The examination of the

in-sample data reveals that the target brand (brand #1) 
discount its product at the rate between 0.0 and 0.51 which 

suggests that any discount rate beyond 0.50 is very unlikely 

and may not be feasible. We construct confidence intervals
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for alternative values of discount rate by the bootstrap 

sampling technique.
Tables 7.9-7.14 present the confidence intervals 

obtained from each of the predictors considered together

with the descriptive statistics of the distributions of the 

predicted values. Figures 7.5-7.10 illustrate the frequency 

distributions of the acquired predicted values. In general, 

the ridge regression predictor provides the confidence 

intervals with the smallest ranges and yields predicted 

values that are similarly distributed for all values of d j 

considered; futhermore, it also have central tendencies, 

measured by the means and medians that are lower than those 

of the other predictors considered. The least squares

predictor gives confidence intervals that have the largest 

ranges. The Stein (D=X'Xq) and PC-Stein (D=X^Xd) produce

confidence intervals that are very comparable in w i d t h .

Figures 7.11-7.16, we make pair-wise comparison between 

the 95% confidence intervals, which has moderate level of 

confidence, obtained from each of the predictors considered. 

The confidence intervals constructed from the ridge 

regression predictor evidently have smaller ranges than 

those constructed from the other predictors. Moreover, we 

discover that the ranges of the confidence intervals of the 

ridge regression predictor are quite stable throughout the 

analysis. The means of the predicted values of the ridge

regression predictor are lower than those of the Stein 

(D=X^Xd) , PC-Stein (D=X^X0) and the least squares predictor.
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TABLE 7.9
The In (Sj) forecasts obtained from the predictors when

LS Ridge Stein PC-Stein
(D=X'Xd) (d =x ;x d)

Average 7.738 6.331 7.788 7.559
Std. 0.639 0.342 0.609 0.565
Max 9.512 7.373 9.486 9.086
Min 5.906 5.119 6.065 5.917
Med. 7.735 6.335 7.804 7.554
99% [6.099, [5.305, [6.225, [6.151,
confidence 9.293] 7.230] 9.251] 8.965]
95% [6.486, [5.666, [6.547, [6.447,
confidence 9.033] 6.985] 8.956] 8.679]
90% [6.624, [5.758, [6.729, [6.581,
confidence 8.782] 6.880] 8.768] 8.480]

FIGURE 7.5
The distribution of the forecast of In (sj) d ^  0.
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TABLE 7.10
The In (si) forecasts obtained from the predictors when 

di= o.l.
LS Ridge Stein PC-Stein

(d =x ;x d) <D= W
Average 7.877 6.480 7.895 7.666
Std. 0.642 0.344 0.612 0.568
Max 9.633 7.510 9.614 9.263
Min 6.027 5.310 6.084 6.076
Med. 7.883 6.487 7.907 7.653
99% [6.240, [5.511, [6.310, [6.291,
confidence 9.413] 7.368] 9.373] 9.109]
95% [6.618, [5.785, [6.688. [6.527,
confidence 9.154] 7.118] 9.050] 8.857]
90% [6.730, [5.897, [6.789, [6.683,
confidence 8.917] 7.035] 8.926] 8.587]

FIGURE 7.6
The distribution of the forecast of l n fs^ di* 0.1.
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TABLE 7.11
The In ( s ^  forecasts obtained from the predictors when

d = 0.2. i
LS Ridge Stein PC-Stein

<D=SW (D = w
Average 8.016 6.628 8.001 7.773
Std. 0.650 0.352 0.619 0.576
Max 9.764 7.676 9.741 9.440
Min 6.085 5.417 6.083 6.078
Med. 8.034 6.636 8.011 7.764
99% [6.346, [5.687, [6.448, [6.347,
confidence 9.549] 7.503] 9.434] 9.216]
95% [6.738, [5.905, [6.791, [6.651,
confidence 9.287] 7.279] 9.194] 8.951]
90% [6.877, [6.045, [6.912, [6.800,
confidence 9.049] 7.198] 9.033] 8.724]

FIGURE 7.7
The distribution of the forecast of In (st) dt= 0.2.
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TABLE 7.12
The In (Sj) forecasts obtained from the predictors when

d i= 0.3.
LS Ridge Stein PC-Stein

(d =x ;x d ) (d =x ;x d)
Average 8.155 6.776 8.107 7.881
Std. 0.662 0.367 0.630 0.588
Max 9.968 7.872 9.869 9.617
Min 6.123 5.526 6.083 6.067
Med., 8.177 6.785 8.107 7.868
99% [6.485, [5.787, [6.508, [6.400,
confidence 9.712] 7.734] 9.474] 9.317]
95% [6.850, [6.015, [6.855, [6.736,
confidence 9.468] 7.450] 9.309] 9.042]
90% [7.022, [6.176, [7.012, [6.905,
confidence 9.246] 7.379] 9.158] 8.864]

FIGURE 7.8
The distribution of the forecast of In (si) d j= 0.3.
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TABLE 7.13
The In (Sj) forecasts obtained from the predictors when

d x= 0.4.
LS Ridge Stein PC-Stein

(D = w (D=X'Xd)
Average 8.293 6.924 8.213 7.988
Std. 0.678 0.388 0.646 0.603
Max 10.171 8.068 9.996 9.794
Min 6.130 5.634 6.083 6.057
Med. 8.314 6.925 8.209 7.979
99% [6.652, [5.842, [6.567, [6.423,
confidence 9.890] 7.914] 9.641] 9.436]
95% [6.963, [6.159, [6.914, [6.841,
confidence 9.632] 7.645] 9.432] 9.157]
90% [7.142, [6.283, [7.123, [6.987,
confidence 9.417] 7.570] 9.293] 9.003]

FIGURE 7.9
The distribution of the forecast of l n f s j d ^  0.4.
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TABLE 7.14
The In (Sj) forecasts obtained from the predictors when

d t= 0.5.
LS Ridge Stein PC-Stein

(d =x ;x d) (D=X'X )v D D
Average 8.432 7.072 8.320 8.095
Std. 0.699 0.413 0.666 0.623
Max 10.375 8.309 10.137 9.970
Min 6.138 5.742 6.083 6.046
Med. 8.444 7.078 8.326 8.083
99% [6.715, [5.844, [6.611, [6.467,
confidence 10.039] 8.102] 9.843] 9.565]
95% [7.077, [6.279, [7.007, [6.912,
confidence 9.825] 7.862] 9.554] 9.312]
90% [7.251, [6.395, [7.221, [7.072,
confidence 9.579] 7.763] 9.426] 9.139]

FIGURE 7.10
The distribution of the forecast of lnfs^ dt= 0.5.
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FIGURE 7.11
The 95% confidence intervals of the ridge regression

and the least squares predictor
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The 95% confidence intervals of the ridge regression 
and Stein (D=X^Xd) predictor.
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FIGURE 7.13
The 95% confidence intervals of the ridge regression

and the PC-Stein (D=X'Xd) predictor.
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FIGURE 7.14
The 95% confidence intervals of the Stein (D=X'X ) andD D

the least squares predictor.
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FIGURE 7.15
The 95% confidence intervals of the Stein (D=X 

the PC-Stein (D=X^Xd) predictor.
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FIGURE 7.16
The 95% confidence intervals of the PC-Stein 

and the least squares predictor.
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The confidence intervals obtained through the Stein 

(D=X'X ) and PC-Stein (D=X'X ) have smaller ranges to thoseD D D D

of the least squares predictor. The PC-Stein (D=X^Xd)
produces confidence intervals than those of the Stein 

(D=X^Xd) predictor.

7.4 CONCLUSIONS.
We have demonstrated that reasonable confidence

intervals can be established via the bootstrap resampling 

technique. From our study, we make several deductions.

1. For the case of forecasting In sj for week 49-52, 
the confidence intervals obtained from the ridge regression 
predictor have the smallest ranges as well as the least
predicted mean square errors; nevertheless, not all of the 
confidence intervals contain the true forecast value. The 

PC-Stein (D=X^Xd) and Stein (D=X^Xd) predictor offer some 

reduction in the variability of the predicted values and 

prediction mean square errors over the least squares 

predictor.
2. The bootstrap confidence intervals for the biased 

predictors considered appear to be larger than the unknown 

true confidence intervals which can be a result of the 

overestimation of the forecast variability.
3. For the case of forecasting along the values of the 

discount rate, the confidence intervals obtained from the 

ridge regression predictor still yield the confidence



www.manaraa.com

215

constructed from the Stein (D=X'Xd) and PC-Stein (D=X^Xd) 

predictor do not completely overlap those of the least 

squares predictor.
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