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ABSTRACT

The dissertation addresses the issues of small sample
properties of estimators and predictors. Economic analysis
usually relies on the asymptotic properties of estimators
and predictors which may not be the same as their asymptotic
counterparts. Furthermore, some biased estimators and
predictors used in economic studies have certain asymptotic
properties which are not fully understood. Consequently,
sampling techniques are used to explore the small sample
properties and construct confidence intervals for predictors
and estimators. In the dissertation, first, Monte Carlo
experiments are used to find an appropriate estimation
procedure for a system of simultaneous equations which
involves a latent endogenous variable. Second, Monte Carlo
experiments are used to explore the small sample property of
the ‘equity estimator’ and compare it to the small sample
properties of the ‘traditional’ estimators. Third, bootstrap
sampling techniques 1is utilized to construct confidence
intervals for the out-of-sample forecasts obtained via
biased predictors which cannot be constructed in the usual
way.

The findings are 1) an instrumental variables approach
is an appropriate alternative estimation technique of the
system of simultaneous equation involving a latent

endogenous variable 2) the small sample of the equity

xvi



estimator is dependent on the vector 1lengths and the
conditioning of the data and 3) bootstrap method produces

reasonable confidence intervals for out-of-sample forecasts.
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CHAPTER 1
INTRODUCTION

| 1.1 ORGANIZATION OF THE STUDY

In this study, we use sampling techniques to study the
small sample properties of predictors and estimators when
their small sample properties are not known. The asymptotic
properties are sometimes used in the place of the small
sample properties but they may not ©be the same.
Consequently, sampling techniques are used to find and
compare the small sample properties of estimators and
predictors.

We are going to use Monte Carlo experiments and
bootstrap sampling processes to help us choose an
appropriate technique for estimating a particular type of
simultaneous equations model. We will also use Monte Carlo
experiments to evaluate the small sample performances of the
alternative estimators. Lastly, we are going to engage 1in
bootstrap sampling techniques to construct reasonable
confidence intervals for out-of-sample forecasts obtained

through a group of predictors.

1.2 SIMULTANEOUS EQUATIONS GENERALIZED PROBIT MODEL

The first section of the study concerns the estimation
of simultaneous equations generalized probit model.
Traditionally, the method of choice 1is that of Heckman
(1978) . Amemiya (1978) suggested certain estimation

alternatives. Moreover, the model itself also suggests a

1



restriction on the parameter space. The performance of the
alternatives relatiive to those of Heckman are unknown. In
Chapter 2, we will develop Heckman’s estimation method and
its alternatives algebraically . In Chapter 3, we will use
Monte Carlo experiments to study the small sanmple
performance of each of the estimation procedures.

The first alternative is a generalized least squares
approach to Heckman’s estimation procedure. The second
alternative is the instrumental variables approach. The third
alternative 1is again the instrumental variables approach
except that we make use of the estimated covariance matrix
in the estimation process. The fourth alternative is
a restricted least squares type estimator.

In Chapter 3, we are going to use a bargaining law
determination model which is to be estimated by each of the
alternatives. The model 1is in a simultaneous equations
context. The first equation describes the determination of
bargaining coverage as a proportion of employees. The second
equation describes the determination of the unobservable
sentiments toward enacting bargaining legislation . We will
use Monte Carlo experiments to evaluate and compare each of
the estimation alternatives via mean square error criteria.
We will also examine the appropriateness of using the
asymptotic covariance as the sample covariance for each of

the estimation methods.



1.3 EQUITY ESTIMATOR

The second topic concerns the small sample performance
of an estimator introduced in Krishnamurati and Rangaswamy
(KR) (1987), called the ‘equity estimator’. KR suggested
that the equity estimator is to be used when
multicollinearity is present. They claimed that the equity
estimator deals with the problem of multicollinearity by
treating each control variable in an equitable manner.

The properties of the equity estimator are not fully
understood. KR (1987) used Monte Carlo experiments to show
that under certain circumstances, the equity estimator had
smaller mean squaie error than that of least squares and
ridge regression.

in Chapter 4, we discuss the effects of
multicollinearity on least squares. Then we introduce the
use of traditional biased estimators, ridge regression and
Stein~like estimators, when multicollinearity is present. We
will describe the derivation and properties for each of the
traditional biased estimators. Then we will discuss the
derivation of the equity estimator and examine its
characteristics.

In Chapter 5, we use actual marketing data to study the
small sample performances of the equity estimator and
compare them to those of least squares and the traditional

biased estimator via Monte Carlo experiment.



1.4 A CONFIDENCE INTERVAL FOR OUT-OF-SAMPLE PREDICTION WHEN
USING BIASED PREDICTORS.

Topic three concerns the establishing of confidence
intervals for out-of-sample prediction when biased
estimators are used as predictors. The confidence intervals
of biased predictors forecast values cannot be obtained in
the usual manner. Consequently, we use the bootstrap method
to construct reasonable confidence intervals.

In Chapter 6, we discuss the effects of
multicollinearity on 1least squares predictors. We will
examine the use of biased predictors and their properties.
Then we will introduce the bootstrap re-sampling method and
its application on estimating confidence intervals for
out-of-sample forecasts.

In Chapter 7, we apply the traditional ©biased
estimators discussed in Chapter 4 to an actual set of data
and use the resulting estimates to make out-of-sample
predictions. Afterwards, we use the bootstrap method to
construct reasonakblle confidence intervals for the forecast

values.



CHAPTER 2
ON THE ESTIMATION OF A SIMULTANEOUS EQUATIONS

GENERALIZED PROBIT MODEL

2.1 INTRODUCTION

Amemiya (1978) describes Heckman’s approach to the
problem of estimating simultaneous equations when there is a
latent endogenous variable that is observed through an
observable dichotomous endogenous variable.

The disturbance terms of the estimable structural
equations are correlated with the dichotomous endogenous
variable. Heckman suggests a two stage estimation
précedure. In the first stage the dichotomous variable is
replaced with a continuous proxy and least squares is
applied in the second stage.

In this study, we develop alternatives to Heckman’s
estimation procedure and evaluate the small sample
properties of each of the estimation techniques. The first
alternative is to use a generalized least squares approach
as suggested by Amemiya (1978). A second alternative is the
instrumental variables approach. The third alternative is
again the instrumental variables approach to the problem
except that we make use of the estimated covariance matrix
in the estimation process.

The fourth alternative that we will consider is a
restricted least squares type estimator. We will see later

that, based on a consistency condition, the single equation



estimation of the structural parameters yields two estimates
of a key parameter which will not have the same value.
Therefore, it is reasonable that we should estimate this
parameter on the condition that its two estimates are the
same. The restricted least squares estimator are wused
when we impose this constraint.

Our other concern is the performance of the covariance
matrix estimators of each of the alternative structural
estimators. The asymptotic covariance matrices of the
various estimators that we have discussed can be obtained
analytically. However, with a limited number of observations
(limited in the sense that it 1is finite), the small sample
variability of the estimation rules may not be the same as
their estimated and theoretical counterparts, or the true
asymptotic covariance. We will use a Monte-Carlo experiment
to compare the small sample performances of the alternative

estimation rules.

2.2 THE MODEL

The simultaneous equations that we explore are

o]
I

Y, 7Y, + Xﬂ@1 + Slg + u, (2.1la)

]
i

Y

y, = 7y, + X8, +8d+u (2.1b)

= T2
where Y, is a T»1 vector containing observations on an
observable dependent variable, X is a TxK matrix of

explanatory variables, X, is a TxK, matrix of explanatory

variables , @1 and @2 are vectors of parameters with K and



7

K2 rows respectively. ¥; is a Tx1 vector of values on an
unobservable endogenous variable. Vectors u, and u, are
disturbance. terms with independent and identical bivariate
normal distributions.

The dummy variable d is defined as

1 y2t>0

0 elsewhere

Thus 4 is the observable counterpart to the
unobservable variable y;. We obtain the reduced form

equation for Y, by substituting Y; into Equation (2.1la),

Y, = 71{72}-,1 X, *8,d } tXB ted oy

= Xlgl + x2@271 + 9(7152*'51) + 1-'-11-’-'0’21—12
1‘3'172 1‘713’2 1 '3’13’2 l- 7172
= XIO+ &8d + Vv . (2.2)
1 1- -1

Heckman (1978) has proved that for the model to be logically
consistent &= -7.3,.
Similarly substituting Y, into Equation (2.1b) yields

the reduced form equation for y;,

»

L]
¥2 = W2{7‘1¥2 + x1@1+ alg 'rl-'-ll} + x2@2 + 62(-3 + l---12
= x1@172 -+ x2€2 + 9(7261 + 62) + 92+72L—11
1- 7172 1- 7172 1- 7172 1 - 7172



=X + v, (2.3)
where Y1 = u1+7192 and Y2 = 92+7291 .
1 - 7172 1 - 7172

Assuming that the joint density function of v,, and d, .,

denoted as g(va,dt) is a proper density function ,i.e.
f g(v, ,d,) dv, =1 .

By definition of d., the probability that y;>0 given dl= 1

is one,
i.e. APr[v > -x' M -x'T_ -1 ] = 1
2t 1t 21 T2t 22 23
Pr[v >£] = 1 .
2t” Tt
Therefore,
(¢4]
J‘eg(va,l)dv2t = Ft (2.4a)
t
and
Pt
J g(v,,1)dv, =0 ) (2.4Db)

-

Similarly, the probability that y;s 0 given dt= 0 is one.

Pr[v = -x'II_-x'1I ] = 1
2t 1t 21 T2t 22

Consequently,



m
t 3 -
I g(v,,0)dv_ = 1-F (2.4c)

t
-

[+ o]

‘[ g(v, ,0)dv_ = 0 . (2.4d)
mn
t

For the joint density function of v .4, to be proper,
the sum of the left hand side terms of Equations
(2.4a)-(2.4d) must bhe equal to the sum of the right hand
side terms which equals tec 1. This will be the case only
when l'I23 = 0 or 7{261+62 = 0 or when the model is 1logically
consistent. The probit model estimates the changes in the
probability of the event d = 1 with respect to the variables
on the right hand side of Equation (2.3). Consequently, the
probability that 4 = 1 cannot be a determinant of the event
itself.

Let af represent Var(vl) ,02 represent Var(vz) and o,
represent Cov(vl,vz) . We can normalize by letting of=l
since y; is a dichotomous variable and thus we can identify
II2 only up to a scalar multiple

Equation (2.2) can be estimated by the ordinary least
squares estimator. Equation (2.3) can be estimated by the

probit method using d in replacement of y;.

2.3 HECKMAN’S MODEL
2.3.1 FIRST STRUCTURAL EQUATION.
Substituting Y; in Equation (2.3) into Equation (2.1a)

and solving for the structural parameters, we get



]
i

where

10

71[ XH2+ \_/2] + Xlgl + 6151 + 1_11

11XH2+ XJ1@1 + 61g _71X(U2- Hz) + E1+71Y2

L
x(Hz, Jl) @1 + slg + W
A 7,
XH + 8 F + 8 (A+F=F-F) + v
B,
v,
(XH, F)| B,| = (F~F)§, - & (F-d) + W,
1)
1
- -* 2 5
21{-31+ v, (2.5)

F = F(XIL) and F = F(Xﬁz),

F is the CDF of a standard normal distribution

function,

W= -7 X(H - I ) +u +7 v.,= Vv, ~71X(H2-H2)

and w' = -(F F)s -8 (F-d).

Note that

where

Consequently,

-1
= -1 L - 1 1 [
¥, -1 1=%, 7, - -1
v, = 1 [1_11 + 7192] (2.6a)
1-y. 7
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i

v, 1 [92 +721._11] . (2.6Db)
1-71?2

Solve (2.6a) for u, and substitute into (2.6b) ,we will
get V.= utr v, Similarly, if we solve (2.6b) for u, and
substitute it into (2.6a) , we will get V= YV tu.

Let Cov(u_t) = ¢ then,
COV(V.t) =3 = (_I,-»-1),¢ (_1..-1)

2 ‘ 2,2 2 2
9,127,979, 72¢1+(1+7172)¢12+71¢2

=1
(1-7.7% )2 2,2 2 ]
e ’ v,9,727,¢,,1¢,
(2.6C)
Since v =73 V. + u ,
1t 1 2t 1t
v V. = Vi 4+ u v
1t 2t T Var 1t 2t
_ _ 2
0, = BV, Vo ] = 7,0, ¢ Efu, v, ]
72u1t+ Yo
E[u v_] = E|u e
1t 2t 1t 1-7 7
17¢
2
- 3‘2¢1 + <1)12
1-1172
Therefore,
2
o = y0° + 72¢1+¢12
12 1 1'71 3

We know that

v = Y.V + u
1t 1 2t 1t
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2
0'12 4 ¢1 + ¢12
V2t. 2 + ult— 2 2 v2t
o v ¢1 + 272¢12+¢2

2

N N

2
= (0}2/62) Vo + e, (2.64)

where e, is normally distributed and independent of Vo,
2

T, + @
E[etva] - El:va[uu - §¢; + 212¢ +¢2 vch:l
¥, 7,979,

1

=0 .
The relationship in Equation (2.6d) 1is wused in the
calculation of the covariance matrix.
Equation (2.5) can be estimated by ordinary least
squares,

A.__ ’ "1. ’
B= (2:2)7 -2y . (2.7)

Aw

The asymptotic covariance of @1 is

?

Cov(éz) = {(Z;Zlqu;}'COV(w:)'{(2121)4'21} . (2.8)

2.3.2 THE Cov(w))
Cov(w:) = E{w: w:’}
=E{ w1+(g-F)61—(1?‘—F)61} { : }
- E[&‘ﬁ’l] ¥ E[ (g-F)cSla;(g—F)’] - E[(%—F)sla;(?—F)']
+E[v_v16;(g-F)’] + E[SI(Q-F)‘:';]

-E[y&&i(%—F)’] -E[(?-F)alw; ]
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—E[(g—F)ajé;(F—ﬁ)’] —E[(F-%)éléi(g—F)’] (2.9)
where

efan] = 2 o niwy - ez ][ ]

E[Y1Y1 -71Y1(H2‘H2) X -71X(H2-H2)V1

2 A - ’
+11X(H2-H2)(H2—H2) X]
= E[Y{Y;] —wICov(vl,(HZ—HZ)’)X’-71XCov((H2-HZ),Y;)

+7TX(Var(ﬁ2))x' . (2.10)

We will now evaluate each of these terms. We assume

that (v ) are independently and identically distributed

t1' V2

with zero mean and covariance

Estimation of the probit model (2.3) via maximum
likelihood yields the asymptotic covariance matrix of ﬁ2 as

the inverse of the information matrix,

-1
N 2
COV(HZ) = =F 9__}'_11_2_7_
6H26H2

The log likelihood function of the probit model is

T
ln ¢ = Z [dﬁln(F(x;HZ)) + (l-dt)ln(l-F(x;HZ))] (2.11)
t=1
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and 8ln ¢ 2 a, £ 1)

ol L=l F(x| CF(x‘T ,)

(1-d,) £(x 1)

1-F(XLH2)

T

= ¥ [e. @0/ (r mF ) ]

t=1

Let Ft be the CDF of

standard normal N(0,1)
distribution evaluated at x‘'NI_ and f = F; and
8°in ¢ _ } £iy,s £+ (XI)F  +
BH BH' t=1 t
F
t
(1-yt)-ft-(x;H2)(l—Ft) } x;xt
2
(1-F.)
Then,
-1
R T £2
Cov(ll) = Z{ ¢ }x'xt
- t=1\ (1-F )F
t t
f2
-—-—-—-4————-——-t
Let A = diag (1-F,)F
Then,
C()‘V(ﬁz) = (X'AX") = -H' (2.12)
Since ﬁz is obtained by maximizing the 1likelihood

function in (2.11), using a first order Taylor’s series

A

expansion of Ha around H2 gives

alné

an
2

a1ne 8°1n¢

i

A

1I all
2

_— (M -11,)
I 8T _ 8Tl n ¢ 2
2 2 2 2

A

Because H2 maximizes 1lné, we know that
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Thus,
~ 2 |
(“2'"2) . K- lnel ,81nt
8l _al a1l
2 2 2
Under regqularity conditions (see Dhrymes 1974),

2 2
. 1 8°lnt  _ 8°1ne
p%-]__)g} - ':-f' = -F = [___.____ :|

oI _alr’
2 2

@
=
o)
=
N\

i

As a consequence, (ﬁz-n ) has the same asymptotic

2 -1
distribution as -E 8 1nt _alne'
Sl _ a1 an
2 2 2
Consequently,

~ Y - _p-lmlélng
Cov((II2 Hz)'Y1) = ~H E[~——— V1]

g th;_
= (XAX) z £,xE F (1-F )|
t t

F
t=1
note that,
E[dtva] = E[v2t|v2t>o] Pr[v2t>0]
= f F = f
:f-,t. t t
t
A ! -1T f2
Thus, Cov ((I,-T) ,v!) = & (XAX) Z ¢ X

t=1 Ft(l-—Ft)

= GIZ(XAX)—IXA . (2.13)



We have
_ 2e _ Avy “ly_ ! -1 2 A B
Cov(wl) = 01Ir 71012AX(XAX) X 'JIO'IZX(XAX) XA +7rIX(XAX) X.
(2.14)

E[(d-F)af(d-F)’] has its (t#s) element described as

0 ; t#s

S°E|(d -F.)(d -F )| = .
1[ t oS S] §%F, (1-F,) : t=s

Therefore,

°Dp (2.15)

E[af(d—F) (d-F)’] = &,

where D= diag(F}(l-Ft))

E{ [YI-WIX(ﬁZ-HZ)] [51 (F-F) ] }

= E[Ylai(f‘-F)’] - E[7151X(ﬁ2—n2) (%-F)'].

E[&glé‘l(%—F)']

Using the first term of Taylor'’s series expansion
FeF + fx' (I-T)
t t Lt t 2 2

Thus,

A ) _ A _ ’ - ’ -1 ra
E[Y151(F'F) ] = 61E[Y1(H2 Hz)]XD1 ouﬁlAX(XAX) XD,
where D = diag (f,)-
Consequently,
A , _ . ’ -1 4 ’ -1 ’
E[‘£’181(F_F) ] = alzblAX(XAX) XD1 + 3‘151X(XAX) XD1'

(2.16)

S(CRTR | ]

E[ylal(c_l—F) ]
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o[ prre vy dmm ] [5, 00 ]}

E[amalyz(g—F)'] - E[wlé‘lX(ﬁz—Hz) (c_l-F)’].

0 ; t=s

E [01261V2t (ds-Fs)] =
o 8 £ ;7 t=s
12 1 ¢

le. E[alzalvz(d-F) ] = 01261D1'

A 4 - L -
E[7131X(“a‘ng) ((_:_I—F)'] = E['JISIX(XAX) 121[ £,x d-F, ]

) (a-5)]
F_(1-F,)

_ ’ _1 ’
= 7,8 (XAX) XD,
7 _ _ ’ _1 ’
E['ylal(g—F) ] =0 3D - 7,8 X(XAX) XD . (2.17)
Using Taylor’s series approximation
2 AU 2, . £ ‘
E[(g-F)al(F-F) ] = E[sl(g F) (T, nz)xnl]
= afnlmxmc)"lxn1 . (2.18)
2 2wy ~ly 2
Thus, Cov(wl) = UllT + (WIIT+81D1)X(XAX) X(w11T+61D1) + 81D2
' _1 ’
~o (¥,1+3 D )X (XAX) XA
1

—X(711T+61D1) + 28 0. D

—G‘IZAX(XAX) 1710,

’ _1 '
~8, (7 I +8 D )X(XAX) XD

7 _1 ’
-3 D X(XAX) 'X(7, I+5D ) . (2.19)
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2.3.3 THE SECOND STRUCTURAL EQUATION

Repeating the procedure in Section 2.3.1, that is
substituting y; in Equation (2.3) into Equation (2.1b) and
solving for Y, yields,

XH2+ v, = 7Y + x232+ 82d +1_12

A A
v,Y, = XHéw X2§2'52§ —X(Hé— Ha) + Vo 7Y
Y, = an - ngz_ 62(21 -X(Hz-— Hz) * (Ya_l-lz)
7, P 7, 7, L

A /7,

= X(Hz,—Jz) g8 / + Blg + v,
-2’
2

1/%

A A A
= XQ @2/7 + 61F + 61(g+F—F-F) + w,
2

1/72
A A #*
= (XQ, F) @2/72 2a
1)
1
=2zg * 2.20
- 2@2 v, (2.20)
where
XJ=X_,
2 2
A A
w., = =1X(II-TM) + 1(v.-u)) = v -1X(1I_-II)
-2 = 2 2 =V-2 I2 -1 = 2 2
72 12 72

* A
and w, = yz—(F-F)Sl-Sl(F—g).

Note that 62= —7261 has been used, and that B;

contains 61
and not 62.

. »
From the above expression for w,, wWe can see that

Cov(y;) is the same as Cov(y:) except for the term

. -1
(711T+61D1) 1s replaced by (72 IT+6101) .
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Equation (2.20) can be estimated by ordinary least

squares, that is

~F — ’ "1_ ’
B, = (2,Z2))-Z)y (2.21)
The asymptotic covariance matrix of é; is
cov(g’) = {(z'z) 'z b -covw’) {(ziz )tz V 2
ov(B)) = 1(2,2)) Z, ov(w,){(2,2)) "Z, . (2.22)

2.3.4 THE ESTIMATION OF X,

The next stage is to find a consistent estimator for
o, and of . The technique that we are going to use is that
of Heckman(1978). The estimates for V7, and 61 can be
derived from Equation (2.7) and (2.21). 62 is derived from

Equation (2.21) by using the relationship that 8= -7,3 .

Consider Equation (2.2)

y. =XII+ 8d + v
11 2 1° -1

E[¥1IX,<§] = X +38.d +E[yllx,<_i]

, 2 . .
since, v, = ola%{+ e, where e - N(O,Ge) and is independent

of v_.
2t

Thus,

E [Vltixt ’ dt,] = 0‘12E [vat | Xt' dt]

Ifd=1,
t

E [Vzt | dt] =E [VZt ! V2t> —th?..]
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0 -1
- . -1/2 =1l 2 . ot
U_xznzv (211) exp( va)det] [Pr[v2t> xtnz}]

- 2t
f(-x;ﬂz)
1-F(-xtH2)
= Iy A, (2.23)
F(x’'M)
t 2
Note that,
[+ ]
E[v v >—xﬂTJ = I v_cf(v_Ilv_>=x'TI) dv
2t 2t t 2 , 2t 2t 2t t 2 2t
-x‘1I
t 2
and f(v_|lv_>-x'T) = f(vm)
2t 2t t 2 .
h(v_>=-x'T)
2t t 2
w .
where h(va}—x;HZ) = f , f(va) dv2t
-x'1l
t 2
= 1—F(-xtH2)
Similarly,
if 1-4 = 1, E[v ld] = E[v jv_ = —X'H]
t 2t 2 2t t 2
—f(-xtHZ)
F(—xtHZ)
-f(x;Hz)
F(_tha)
= MR o AL (2.24)
F(-x'1I_)
t 2
Consequently,
L ]
E[yllX,c_i] = XIT1 + alg + olz[m_i + A (1-9)]

A A% A
XH1+-61g + am[kg + A (1-@)] + V.

(2.25)



We know that v = ¢ _v._ + e, therefore
’ it 12 2t t

_ 2
Var(vnlxt,dt) =0, Var(vztlxt,dt) + Var(et).

Thus, Var(et) = df - crf2 .

2
— 2 -
Var(v2t|xt,dt) = E[vatlxt,dt] {E[valxt,dt]}

—_— 2 . i 2 Y
If dt-l, E[thlxt,dtJ = E[valxt,vzg xtH2:|

@

2 2
1 J‘ (-v_./2)
5 . v_e 2t av
1 F(-xtHZ) ‘XLHZ 2t 2t

= a -{(—x;l’[z)f(xlnz) + [1-—F(—x;H2)]}

= 1+ (=x(T)£(-x/T)
I-F(-x, 1)

where a = 1/(1-F(-x;II2)).

Hence,

’ —_ Y - 2=
Var(valx'_,v2 >—xt1'[2) = 1 + ( xtHZ)At At q. .

t t

) _ 2 _ 2 <
If 1-dt—1, E[vmlxt,dt] = E[VZtlxt,VZt_ xtnz]

= _1 ot _ , o
- ety {2 (CE) e )
Hence,
. _ ot L] - ¢2=
Var(vmlxt,va--xtnz) =1 + ( xtIIZ)At At s, -
Consequently,

21

Var(vmlxt,dt) = dtqt + (1—dt)st. (2.26)
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2 2 2
Var(v“‘lxt,dt) C o 0“12+(rm[dtqt + (1—dt)st]

= of[(l-—pz) + pz(dtqt—%(l—dt)st] (2.27)

where p = Uu/(GJOé) = am/al, since we apply normalization
rule on the second reduced form equation.

Using the relationship in Equation (2.25), a consistent
estimator of o, can be obtained by applying OLS. If we let
%L danote the residual from the OLS estimation above, then a
poasible consistent estimator of of is obtained by the

astimated residuals of Equation (2.25). From Equation(2.27),

the estimated a? is obtained from

Ao 1 g 2
Pt m v i B -
¢ 1 T Z ,I. 012 [1

i

T
Z (dtqt+(1—dt)st] (2.28)
t=1

2,3.5 THE PARAMETERS OF INTEREST,
From Eqguation (2.20), the parameters that we are

interested in are ¥y B

. B, and 6? which are non-linear
4,"'4 (o

functions of the parameters in @:. Let
F'A_l
Y2 A
Au ,§A“1 A
B, = PLP = -2
5 A
L % 3
72 1/7\1
Thus, a= B | = g(@) = AR (2.29)
L %, AL/

Consequently,
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99 ag’

Cov(éz) = A’ Cov(B)) 9A (2.30)
-1/a% 0 0
2 1
where 89 - =AL /A x I 0
aA 1 2
2
A /A 0 V2
—7; 0 0]
= 8,7, 721K2 0
—6272 0 _72
72 0 0
_ B -1 0
= -7,| -2 K, (2.31)
é 0 1
2
and

Cov((_s;) (Z;Zz)'IZ'ZCov(w;)ZZ(Z"ZZZ)'1 (2.32)
Similarly,

Cov(éz)

‘ -1, * [ -1
(2;2,)7'2/Cov(w)Z (Z]Z)" . (2.33)

2.4 ALTERNATIVE ESTIMATORS.

2.4.1 GLS OF TRANSFORMED MODEL.

As mentioned in the introduction of this chapter, we
will estimate the parameters of Equation (2.1) wusing
alternatives to Heckman’s estimator. The first is a

generalized least squares (GLS) approach to Heckman’s model
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as suggested by Amemiya (1978). The first step is to obtain
estimates for the covariances of w: and w; which are
expressed in Equations (2.19) and (2.20). Our concern is in
the dimension of the covariance of w: and w; which are TxT.
For large T, performing inverse operation on Cov(w:) and
Cov(w;) may create round-off errors and, most of all, it is
computationally burdensome.

We can reduce the dimension of the problem by
premultiplying both sides of Equations (2.5) and (2.20) by a
set of instrumental variables. An obvious choice 1is the
matrix of explanatory variables, X. Therefore, from Equation

(2.5) we get
x¥1 = X21{_31 + Xyl . (2.34)

The GLS estimator of (2.34) is expressed as

8. ={ (XZ,) (X cov(w)X) ™ (X2)) }-1{ (x2,) (X cov(w)x) ! (Xy)) }
(2.35)
Note that instead of inverting Cov(w:) which is of
dimension T, we take inverse of X/Cov(w:)x which has
dimension K. This way we can tremendously reduce the size of
the matrix to be inverted, provide that T>>K.
The covariance of @; is
-1

cov(B],) = {(x'zl) I(X’COV(WI)X)_I(XIZI)} (2.36)

where
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'] » _ 2 ’ s / -1
X Cov(wl)x = alxx + X(711T+5101)X(XAX) X(711T+51D1)x

+8°XD X - 20, X(7 I.+8 D )X
1 2 12 1 T 11

+286 o XD X

1 12 1

’ ’ _1 ’
—61X(711T+61D1)X(XAX) XDIX

’ ’ _l ’
—61XD1X(XAX) X(711T+81D1)x . (2.37)

Similarly,

’

’ -1 ’ ’ ’ - - ’
Cov(wz)X)4(X22)} {(xzz)(x Cov(wZ)X) 1(X¥1)}

(2.38)

é;c= {(X’Zz) ,(X

and

A u ’ V) - _ ’ -1
Cov (B, ) = {(xza) (X Cov(w,)X) 1(xzz)} . (2.39)

The expression for X Cov(w;)x is similar to Equation
(2.35) except that we replace (¥ I +8 D) with (y:IT+61D1).

A

o, and 1its covariance are obtained by the procedures

described in Equation (2.27) and (2.28) ,respectively.

2.4.2 INSTRUMENTAL VARIABLES/OLS.

Our second alternative estimator 1is based on the
attempt to eliminate the correlation between d and W, and W,
by using X as & matrix of instrumental variables, as
suggested by Amemiya(1978). Heckman uses F(Xﬁz) to replace d
in order to eliminate the correlation with the disturbance
terms. Substituting Equation (2.3) into Equation (2.la) and
rearrange the terms, we get

Y, = 3(1[XH.2+\-,2] + X1@1 +‘S1(-i +u,
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~ 1
= [XH,(_i] 61 + V_J]_
8
1
o %
= 21@1 + W (2.40)
Premultiply both sides by X , we get
Xy = XZ'@, + Xw_ . (2.41)
Equation (2.41) can be estimated by OLS,
~¥ 1o ! ‘5 -1 1o ! ’
B,= [(le) (le)] [(le) (Xyl)] (2.42)
with
e 1y ! ‘o -1 to 17 ‘o re 1 1 -1
Cov(B,) = [(xzi) (le)] (X2.)X Cov(w,)X(XZ) [(le) (le)] (2.43)
where
X Cov (W)X = orfxx 27,0 XX +7f(XX) (XAX) T (xXX) .
Similarly,
r IO » 1
Xy,= X2_8, + Xw, ' (2.44)
~ % o 1 -1 1o -
B = [(xzz) (xzz)] [(xza) (X)_fl)] (2.45)
and
~ % o 1, -1 ’e 27 /o ‘5 LS -1
Cov(B,) = [(xzz) (xzz)] (XZ_)X Cov(w,)X(XZ) [(xzz) (xzz)]
(2.46)
where Z_ = [Xa,g].
X Cov(w,)X is the same as X Cov(wl)x except 7, is
replaced by 1/72. @2 and its covariance matrix are obtained
by the same procedure that we use to derive @2.
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2.4.3 INSTRUMENTAL VARIABLES/GLS.
our next alternative is to apply GLS instead of OLS to

Equations (2.41]) and (2.44). We get
‘e 1 _ S -1 ‘e 12 - ’
B = [(le) (X Cov (W )X) 1(le)] [(le) (X Cov(w )X) 1(x¥1)]
(2.47)
with
~ o + 1 -1 S -1
Cov(@lc) = [(le)(x Cov(wl)X) (XZ1)] . (2.48)

Similarly,

to 4 7 _ s -1 1o 7 ’ - ’
gzc = [(xzz) (X Cov (W )X) 1(xzz)] [(XZZ) (X Cov(w,)X) 1(X¥1)]
(2.49)

‘e ! 7 _ ‘. ~1
Cov(B,) = [(xzz) (X Cov(w,)X) 1(:{22)] : (2.50)

éa}s derived from the same process that we use to get

2.4.4 RESTRICTED LEAST SQUARES.

The final alternative we consider is a restricted least
squares type estimator. From Equations (2.5) and (2.20), we
can see that we have two estimated values of 61. When g: and
@; are estimated separately we can get two different values
of 81. Therefore, we can use restricted 1least squares
estimator in the estimation of @Iand. @;; the restriction

imposed is the two values of 61 are the sanme.
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For computational purposes we choose to impose the
restriction on Equations (2.41]) and (2.44). The model is

expressed as,

7 ‘o [ 7
X¥1 XZ1§1 Xyl (2.51)
= +
Ys l° 4
x¥1 xzz§2 i sz
.
B,
or q = Q + r
»
B, |
xz;’ 0
where Q = ‘o
0 XZ

The covariance of the disturbance term r is expressed as

X'Cov(wl)x X'Cov(wl,wz)x

Cov(r) = . (2.52)
X'COV(Wé,Wl)X X’Cov(wa)x

Cov(w” and Cov(wg are expressed in Equation (2.19) and

(2.20).

Cov (w1 ,wz) = E [wglv_wz]

sl mrxfmm)) vy 3 x|
= 2lyy] - E[Y1<$2X<ﬁ2‘“2)3]

_ A - 4 Z . A _ A _ 7 7
E[WIX(HZ L)V, ]+ zr; E[X(rr2 IL) (I, nz)x]

= ¢°I_ - 1o, AX(XAX) 'X - 7.0 X(XAX) ‘XA
1T '}‘ 12 1 12

2
4 - ’
+ L. x(xax)”'x (2.53)
2
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The only caution for this alternative is 1/7, should
not be the same as ¥, @s the Cov(r) will become singular
for all of the terms of the covariance matrix in Equation
(2.52) are the same. If no restrictions are imposed , the

estimation of Equation (2.51) 1is carried on by GLS.

8" = [olcov(x)) o] h [etcov(z))q (2.54)

where

. B
B

# > ®

2

The restriction that we want to impose is that 3, in @I
has the same value as 61 in g;. ILet H be a column vector
with dimension (K1+K2+4). The elements in H have =zero
values except for the (K1+2,1) and (K1+K2+4,1) positions
which have values equal to 1 and -1 , respectively

The estimation of 1_3* with the restriction that H}_3*=9
can be expressed as, |

A

By = B'- (Q(cov(r)) o) "H(H(Q(Cov(r)Q) 'H ) (HB").  (2.55)

. A* 0 3
The covariance of @R is described as

A% A# A% ’ A% ’_1 A%
Cov(BR) = Cov(B ) - Cov(B JH(HCov(B )H) HCov (B ) (2.56)
where

cov(B") = (a(cov(r))lg)t . (2.57)

In order to find the estimate of o, that corresponds to
in g*, we simply partition the matrix g; in accordance to

8.

B & is the vector of parameters which is the same as
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/_3;, the subscript R denotes thét it is from the restricted
least squares) and then use the similar technique that we
have been using for other alternatives to transform the
estimates of Q;R and its covariance into the estimates and

covariance of &



CHAPTER 3
THE MONTE CARLO EXPERIMENT OF THE SIMULTANEOUS

EQUATIONS GENERALIZED PROBIT MODEL

3.1 INTRODUCTION,

In this Chapter, we perform Monte Carlo experiments on
Heckman’s estimation technique and some of its alternatives.
With these experiments we can investigate the small sample
performance of each of the estimation rules. We are
concerned about the small sample properties of these
estimation procedures because their small sample variability
may not be reflected by their theoretical asymptotic
counterparts.

The plan of this Chapter is as follows. In Section 3.2,
we discuss the model describing the determinants and effects
of state-wide bargaining laws simultaneously. We estimate
this model the way of Heckman’s estimation technique and its
suggested alternatives. In Section 3.3, we explain the
concept of a Monte Carlo experiment. We also portray the
criteria we used to evaluate the small sample performance of
each of the estimation rules. Afterwards, we apply the Monte
Carlo experiment to Heckman’s estimation technique and its
alternatives. Then we report the small sample performance of
each of the estimation procedures. Finally, we compute the
true asymptotic standard errors for the parameter estimates
obtained from each estimation technique and compare them to

the finite sample mean square error.

31
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3.2 THE MODEL.
The model that we study is a simultaneous equations
system with one of the endogenous variables being a latent

variable. The model is expressed as

*
PUBUN, = 7V,

+ B + B1ZGOVWAGEt + BmPRIVUNt

11
+ B, ,PROPLAW,_ + B EAG_+ B SOU,
+ 8 SENT_+ u

Y, = y,PUBUN + B8 + B, GOVWAGE + B, PRIVUN,

+ 8,,CAl, + B, COPEC + B, LOGMPRTY

+ BZJONWLFt + 6ZSENTt + u,,

1 y2t>0
SENT, = (3.1)
0 elsewhere '
where
GOVWAGE = government employee average salary
PRIVUN = percentage of all employment organized
PROPLAW = proportion of contiguous states possessing
Mandatory Bargaining Law (MBL)
EAG = percentage of employment in the agricultural
sector
Sou = southern states dummy variable
SENT = MBL dummy variable which is equal to 1

if the state has MBL statue

PUBUN = percentage of the public sector unionized
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CAl = number of unfair labor practices cases
charged against an employee

COPEC = fraction of votes by state’s delegation to
the U.S. House of Representatives consistent
with AFL-CIO approved position on issues of

interest to organized labor

LOGMPRTY = the natural log of the ratio of the numbers
of the legislature’s majority party to the
total number of legislators

NWLF = percentage of non-white labor force

and u, and u, are the disturbance terms.

In the model described in (3.1), extent of unionization
and the 1legal environment regulating wunionization are
jointly determined. We use the data set for the year 1977
and 1982 published in the Census of Government, which
includes the 48 contigﬁous states.

Several studies have attempted to explain the
determinants of unionization and the 1legal environment
either in a single equation context or in a simultaneous
equations context. Hunt and White (1983) study the
determinants of legislative support for public school
teacher collective bargaining using the ordered probit
method developed by McKelvey and Zavoina (1975). Saltzman
(1985) examines the determinants of teacher bargaining
coverage and bargaining laws via a single equation approach.

Hunt, Terza, White and Moore (1986) provide a

simultaneous framework for studying the model in which
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teacher’s wage and unionization are the jointly dependent
variables. Farber (1988) analyzes the evolution of
bargaining laws for police, teachers and state workers using
a Markov transition model. Freeman and Valletta (1988)
examine the effects of 1legislative 1index on collective
bargaining, wages and employment in municipalities. Waters
(1989) studies the determinations of state-wide bargaining
laws via the estimation technique developed by McKelvey and
Zavoina (1975). She also studies the determinants and
effects of bargaining 1laws in a simultaneous equations
context for school teachers, police ,fire fighters and
public employees.

Using the model described in Equation (3.1), we
estimate the structural coefficients by applying Heckman’s
estimation technique and its alternatives. The estimation
techniques that we are going to use are Heckman’s procedure
(HECKMAN), generalized least squares of the transformed
model procedure (HECKGLS), an instrumental variable / GLS
procedure (AMEMIYA) and the restricted 1least squares
procedure (RLS). We omit the instrumental variable / OLS
approach because the estimation procedure is contingent on
an incorrect formulation of the covariance matrices.

The instrumental variable / OLS approach estimates the
parameters of the first structural equation by the

relationship

B, = [(X’Z:)’(X'Z:)]—i[(x’zz)’(x’yl)] .
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This is equivalent to assuming that the term X'Cov(w )X is
an identity matrix which is not appropriate. Nevertheless,
this will be consistent.

The estimated coefficients of the model (3.1) and their
standard errors are reported in Tables 3.1 and 3.2. HECKGLS,
AMEMIYA and RLS estimation procedures require the knowledge
of the covariance matrices Cov(w:), Cov(w:), Cov(wl) and
Cov(wz); consequently, we have to estimate their components

2
(the parameters T O

¥ ¥, and 3)) in advance via

1!
Heckman’s estimation technique; we call these estimates
‘starting values’.

Recalling Equations (2.25) and (2.28)

A A% A
E[¥1|X,§] = XU + 5.4 + 012[7\(_1 TN (1—<_i)] + v, (3.2)
A2 l Ag Ao _ ; _
o, = TL n, * 0‘12[1 T Z(dtqt + (1 dt)st] (3.3)

We estimate o, by applying least squares to Equation (3.2).
The traditional practice is to estimate the parameters o,
and of before the estimation of the structural parameters.
As a consequence, both 8u: and 3? are not dependent on
either the starting values or the estimation rules employed
in estimating the structural parameters.

In Table 3.1, we use the estimates from the HECKMAN
procedure as the starting values. Afterwards in Table 3.2,

we use the estimates in Table 3.1 as the starting values in



36

TABLE 3.1
The coefficient estimates of the selected estimation

process. §
First structural equation
(PUBUN)
HECKMAN HECKGLS AMEMIYA RLS
Yg -2.3830 6.5070 7.0723 5.5448
(7,) (4.1091) (7.5084) (11.3249) (5.0937)
ONE 39.2069 54.7112 57.8739 49.2666
(8,,) (7.8998) (14.0054) (21.6366) (9.2366)
GOVWAGE -11.4664 -11.4505 -12.4694 -11.0605
(B,,) (2.0541) (2.2354) (4.2063) (1.7742)
PRIVUN 0.2170 0.3417 0.3914 0.5008
(8,,) (0.0974) (0.1562) (0.2535) (0.1075)
PROPLAW 14.9908 22.4227 24.3429 24.6209
(8,,) (2.6561) (6.2382) (11.5163) (4.8765)
EAG -0.8328 -0.7371 -0.7371 -0.3871
(8,.) (0.1975) (0.2509) (0.3546) (0.0949)
S0U -7.0743 -8.2399 -8.0428 -5.9107
(8,,) (2.1308) (2.4350) (4.3218) (1.6643)
SENT 13.3007 -29.1647 ~-36.7625 -32.5057
(8,) (11.5765) (32.9590) (51.8465) (23.6721)
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TABLE 3.1(continue)
The coefficient estimates of the selected estimation

process.
Second structural equation
(SENT)
HECKMAN HECKGLS AMEMIYA RLS

PUBUN 0.2348 0.0281 0.0136 0.0614
(7,) (0.1561) (0.9855) (0.0201) (0.0198)
ONE 16.8075 1.8092 -~0.2897 5.7772
(B,,) (47.6064) (24.4659) (8.1073) (3.6245)
GOVWAGE 3.0002 0.4580 0.3234 0.9030
(B,,) (1.2822) (1.6509) (0.3607) (0.3211)
PRIVUN -0.0813 -0.0106 -0.0043 -0.0452
(B,,) (0.1643) (0.0957) (0.0238) (0.0128)
Cal -0.2878 -0.0587 -0.0411 -0.0960
(8,,) (0.2096) (0.1835) (0.0452) (0.0242)
COPEC 0.0260 0.0025 -0.0014 0.0193
(B,,) (0.0269) (0.0300) (0.0081) (0.0033)
LOGMPRTY -6.5865 -1.1605 -0.5208 -2.3829
(8,,) (12.2396) (6.8097) (2.1201) (0.8632)
NWLF 0.1425 0.0206 0.0051 0.0277
(B, o) (0.1986) (0.1222) (0.0309) (0.0056)
SENT -2.3558 3.2636 3.4669 1.9961
(8,) (2.1972) (3.0126) (0.6589) (0.7857)
—7251 -3.1230 0.8195 0.5000 1.9958

Note: The values in parentheses are the asymptotic standard

errors.
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TABLE 3.2
The coefficient estimates of the selected estimation

process (with iterations).

First structural equation

(PUBUN)
HECKGLS AMEMIYA RLS

v 5.5669 7.0737 7.8264
(7,) (10.7382) (11.3708) (11.0188)
ONE 53.0755 57.8862 54.9272
(8,,) (22.1892) (21.7167) (22.3512)
GOVWAGE -10.2917 -12.4828 -12.3316
(B,,) (3.1039) (4.2300) (4.4677)
PRIVUN 0.3877 0.3914 0.5074
(8,,) (0.2488) (0.2545) (0.2212)
PROPLAW 20.8582 24.3803 29.0297
(8,) (8.3838) (11.5845) (10.8975)
EAG -0.6673 ~0.7162 -0.4313
(8,,) (0.3805) (0.3559) (0.2538)
sou -8.6485 ~-8.0402 ~5.8078
(8,) (3.8307) (4.3433) (2.7132)
SENT -30.6036 -36.7735 -42.9409

(54.4235) (52.0497) (50.4754)
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TABLE 3.2 (continue)
The coefficient estimates of the selected estimation
process (with iterations).

Second structural equation

(SENT)
HECKGLS AMEMIYA RLS

PUBUN 0.0159 0.0129 0.0445
(7,) (0.0328) (0.0346) (0.0251)
ONE -1.2999 -0.4123 10.0331
(B,,) (14.7979) (15.3682) (8.6381)
GOVWAGE 0.3374 0.3154 0.9627
(B,,) (0.6426) (0.6597) (0.6002)
PRIVUN 0.0002 ~0.0038 -0.0382
(8,,) (0.0426) (0.0439) (0.0235)
cal -0.0418 ~0.0402 ~0.1119
(8,.) (0.0804) (0.0838) (0.0630)
COPEC 0.0005 0.0013 0.0195
(8,,) (0.0150) (0.0152) (0.0092)
LOGMPRTY -0.3252 ~0.4847 -3.3281
(B,,) (3.8427) (4.0050) (2.2609)
NWLF 0.0065 0.0044 0.0404
(8, 1) (0.0540) (0.0571) (0.0220)
SENT 3.5256 3.4775 1.9093
(s,) (1.2036) (1.2042) (1.1761)
-7.8 0.4866 0.4744 1.9109

21
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correspondence with the estimation techniques used in Table
3.2. The resulting estimates are then used as the new
starting values. We repeat this process until the maximum
value of the absolute values of the difference between the
previous starting values and the estimates of the structural
parameters is less than 1.0E-04. Let gls and o6 denote the
vectors of the previous starting values, then the stopping

criterion can be expressed as
]

1

@13-
max

a -
-2s

< 1.0E-04 (3.4)

1R> 1>

2
A

where @I and %2 are the vectors containing the parameters
estimates of the structural parameters. The maximum number
of iterations permitted is 20.

From Table 3.1, we see that different estimation
methods yield vastly different estimates of the same
parameter. We concentrate on four key parameters; namely,
ORI 61 and 62. The RLS procedure is the only procedure
which gives the estimate 32 that conforms with the logical
consistent requirement, 62= —1261. Moreover, HECKMAN
procedure yields the only negative estimate for the
parameter 7, which 1s not obtained by other estimation
procedures. RLS procedure provides statistically significant
estimates for the parameters 62, v, and 51. AMEMIYA and
HECKMAN procedures give statistically significant estimates
for the parameters 62 and L respectively.

From Table 3.2, we observe minimal changes in the

parameter estimates via AMEMIYA procedure when the iterative
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routine is introduced. Similar to Table 3.1, RLS gives the

estimate of the parameter §., which complies with the logical

2
consistent requirements. Furthermore, we find that the
estimated variability of the estimates of the first
structural equation obtained from HECKGLS and RLS procedures
increases noticeably. All three estimation techniques in
Table 3.2 yield statistically significant estimates for the
parameter 82. The RLS procedure also gives a statistically
significant estimate for the parameter ¥,. None of the
iterative methods take more than ten iterations before the
stopping criterion, Equation (3.4), is met.

From Tables 3.1 and 3.2, we observe that different
parameter estimates and measures of variability are obtained
by utilizing different estimation methods. It 1is not
possible to choose the appropriate estimation technique
based on the information presented in Tables 3.1 and 3.2. As

a consequence, we use Monte Carlo experiments to examine the

small sample properties of each of the techniques.

3.3 MONTE CARLO EXPERIMENT,
3.3.1 MONTE CARLO SAMPLES.

A Monte Carlo experiment 1is a simulation exercise
designed to investigate the small sample properties of
estimators. In this experiment, we assume that we know the
exact nature of the relationships between the endogenous
variables and the explanatory variables. Consider the

simultaneous equation system in Equation (2.1)
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u, (3.5)

Yy, = 7Y, + ngz + Szc_l + u, (3.6)

Suppose that we know the values of the structural

parameters Yo Yy @1, gz, 61 and 82, we can solve for the

reduced form parameters as expressed in Equations (2.2) and
(2.3)

y, = XI + 8d + v, (3.7)

y, = XIL + v, (3.8)

where v and Yz

are normally distributed vectors of

disturbance terms with mean vector 0 and covariance matrix
z,

The reduced form parameters gl and gz are defined by the
relationship

M= -B[* (3.9)
where
m= [[Ill 1]2] ’
_l Y
r = 2
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and

B =
B.B_B,.0 0 0 B_B

21 "22 T23 27 Tas
2 .
If we know the values of o, and o, We can derive the
‘ L] [
endogenous variables Y, and Y, where the variable 4 1is

obtained by

{ 1 y;t >0

0 otherwise

Using a normal random number generator, we construct N
samples of (Tx2) matrix VvV, VvV = [ v V.1 which are normally
distributed with mean vectors 0 and covariance matrices Z.
Let W be a (Tx2) matrix whose elements are generated from a

172

N(0,1) random number generator and let X be a square

matrix such that

1/2

1/2
Z .

=2

We construct a matrix of disturbace terms V with mean
vectors 0 and covariance matrix ¥ by the relationship
) Vv = w72
We utilize these N matrices of disturbance terms to
produce N samples of d and Y,- We name each of the samples
of d and Y,a ‘Monte Carlo’ sample.
Let ﬁgl be an estimator of the i-th element of the
parameter vector g: where the super-script j denotes that
the estimator is applied to the j-th Monte Carlo sample, j =

A

1,2,...,N. We evaluate the small sample performance of 811

by its biasedness, variability and risk (MSE).
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1. Biasedness.

We observe the biasedness of an estimate from the
difference between the actual parameter value and the
average estimated value obtained from our Monte Carlo

experiments. The bias of a parameter is defined as
i *
BIAS, = -3~ - B . (3.10)

2. Variability.

We measure the variability of the estimator é?i by its

b

standard deviation which is defined as

1,

£ (B -8 A
J L L1 (3.11)
N

SD(B;] ) = {

where é:x= % B’j /N.

1,1
3. Risk(MSE).

We compute two types of risk. First, we estimate the

A

risk for the individual estimator 3:1' Second, we calculate

b4

the overall risk of applying the estimation technique to the
model (model error).
The average risk (MSE) of the estimator §:1 is defined

’

as

MSE = 4 . (3.12)

Let é: and &2 be estimators of the parameter vectors B:
and a, respectively. g: is the vector of the structural

parameters of the first equation and a is the vector of the
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parameters of interest of the second structural equation.

Furthermore, let é” and qj

B, > denote that we apply the

estimation rule to the j-th Monte Carlo sample. We then
define the model error risk for the first and second
structural equation as

RISK1 =
J

1(@}’ - 8 (8] - BI/N (3.13)

i~z

and
\ ~3 PRVIAS
RISK, —JZI (@) = @)’ (a - a)/N (3.14)

respectively.

3.3.2 MONTE CARLO EXPERIMENTS RESULTS.
In this section, we report the results from the Monte

Carlo experiments. As discussed in the preceding section, we
assign the parameter values and generate the data in the
experiments. The parameter values selected to be the actual
parameter values are those of the Heckman’s estimation
technique in Table 3.1. We choose these values for the
purpose of defined asymptotic standard errors which we
discuss later on. Nevertheless, we have to calculate a new
estimate for the parameter 3, to ensure that the consistency
requirement 3, = —5172 is met.

Assigning the actual parameter values is not as simple
as it appears to be. We discovered that some values of the
parameters are not usable in the experiments. By being not
usable, we mean that some parameter values lead to negative

estimated values for the asymptotic variances for some of
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the parameters, which is an extreme undesirable property. We
find that the parameter values of the HECKMAN procedure must
be scaled down so that they are usable for all of the
estimation techniques. We divide the parameter estimates of
the second structural equation by 8, which is the smallest
value that eradicates the problem of negative estimated
asymptotic variances. However, we also have used the square
root of the variable PROPLAW in place of its original value
to reduce its variation. This solves the problem of its
approximated asymptotic variance being negative. The true
parameter values used in the Monte Carlo experiments are
presented in the first column of Table 3.3.

We have also experimented using the estimates obtained
from other estimation techniques as the actual parameter
values. The estimates for the techniques which incorporate
generalized least squares have one feature in common.
Refering to Section 3.3.1, we use the structural parmaters
to derived the reduced form parameters. The reduced form
parameter vectors H2 that are obtained from the techniques
which incorporate generalized least squares result in the
product XH2 being less than zero for all observations.
Keeping this feature in mind and bringing to mind how the
variable d is generated in the Monte Carlo experiments, we
realize that by using the parameter estimates from other
techniques besides Heckman’s, the generated d variable will
be very likely to take on the values of zero which create

very little scattering of the data generated. Moreover, as



47

we shall see in the next section, when XHZ is less than zero
for every observation, the asymptotic standard errors of the
techniques using the instrumental variables approach are not
defined.

For the covariance matrix used in the Monte Carlo
experiments, the values of crf and o, are the estimates
obtained via applying Equations (3.2) and (3.3) to the
original data set. In order to be consistent with the
scaling of the parameters of the second structural equation,
the estimate of o, is divided by the same constant, 8.

Consequently, the covariance matrix used is

51.5406 -0.6336
-0.6336 1
. 2
The constant 1 1is not changed for o = 1 due to

2

identification condition (see Section 2.2).

While we were performing Monte Carlo experiments, we
came across the problem of unusable estimated parameter
values often. In other words, many Monte Carlo samples give
negative estimated variances for at 1least one of the
parameter eétimates. Thus, we eliminated such samples and
generated replacements. We find that far more than a
thousand Monte Carlo samples must be generated to obtain a
thousand sets of parameter estimates of which all asymptotic
variances are positive. The total number of Monte CcCarlo
samples generated for the HECKMAN, HECKGLS, AMEMIYA and RLS

procedures are 1646, 2004, 2476 and 4235, respectively. The
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difference in the number of total Monte Carlo samples
generated suggests that each procedures can accept different
combinations of the parameter estimates and the estimates of
the covariance matrix components.

As described in Section 2.4.4, the RLS procedure is not
defined whenever v, = 1/72. By utilizing the term Cov(w&,wz)
as one of the elements in the RLS procedure, when ¥, = 1/72
the terms Cov(w&), Cov(wz) and Cov(w“vg) are all identical
and hence causes the covariance of the vector of disturbance
terms r, Equation (2.52) to become singular. Some Monte
Carlo samples yield the estimates of v, and v, which are
nearly identical and makes the RLS procedure undefined. Once
we encounter such a sample, we drop that particular sample
and generate its replacement. The problem of undefined RLS
procedure is not a serious one; of the 4235 Monte Carlo
samples generated for the RLS procedure, only 8 samples
cause this problem.

As outlined earlier, we use a Monte Carlo experiment
for each of the estimation techniques to study their small
sample properties. We obtain a thousand sets of estimates
for the structural parameters for each of the estimation
techniques and present their average values together with
the true parameter values in Table 3.3. The last row of
Table 3.3 is the average values of the negative of the
product between the estimates of 3 and v, in order to test
how strongly the 1logical <consistency requirement is

implemented.
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TABLE 3.3

Average values of the parameter estimates obtained

through Monte Carlo experiment.
First structural equation
(PUBUN)
ACTUAL HECKMAN HECKGLS AMEMIYA RLS
Yg -2.3830 6.2237 16.0281 -6.6288 ~31.4698
ONE 39.2069 48.8574 65.4825 30.5729 -16.5942
GOVWAGE -11.4664 ~13.0767 -10.5118 -11.0677 ~-6.3286
PRIVUN 0.2170 0.2305 0.1365 0.2249 0.3759
PROPLAW 14.9908 14.3617 12.9156 13.8236 7.0950
EAG -0.8328 -0.7823 ~-0.8784 -0,7885 -0.3796
Sou -7.0743 -6.7742 -~7.9864 -6.6523 -3.7791
SENT 13.3007 -7.4779 -34.2523 29.6112 106.5000
Second structural equation
(SENT)

PUBUN 0.0294 0.1253 -0.0030 -0.0053 -0.0194
ONE 2.1009 ~16.8970 -2.4216 -1.9342 -1.9567
GOVWAGE 0.3750 0.2226 -0.0858 -0.0398 -0.3577
PRIVUN -0.0102 -0.0387 0.0021 0.0027 0.0069
CAl ~-0.0360 -0.0323 0.0069 -0.00001 0.0382
COPEC 0.0033 -0.0327 0.0005 -0.00007 -0.0033
LOGMPRTY -0.8233 2.5657 0.2310 0.1242 0.2706
NWLF 0.0178 -0.0019 ~-0.0039 -0.0005 -0.0139
SENT -0.3904 5.9432 3.1670 3.2365 4.0383
-7.48 10.8299 -4.0703 0.1139 4.0372

21
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For the first structural equation, the AMEMIYA and RLS
procedures yield the correct signs for both of the Kkey
parameters ¥, and 61, on the average. However, almost all
estimation techniques, with the exception of the RLS
procedure, give the average estimated values of other
parameters in the first structural equation besides ¥, and
61 which closely resemble the true parameter values.

For the second structural equation, none of the
estimation techniques being considered yield satisfying
estimates of the structural parameters. None of the
techniques give the correct signs for the average values of
the estimates of ¥, and 62. Furthermore, the average
estimated values for the structural parameters do not
closely approximate the true parameter values. Nevertheless,
the RLS procedure still guarantees the logical consistency
requirements as indicated by the term -3.7,-

In Table 3.4, we report the bias of the estimates along
with the calculated standard errors and mean square errors
obtained from the Monte Carlo experiments. The traditional
HECKMAN procedure gives the smallest standard errors and
mean square errors for the estimates of all parameters in
the first structural -equation. However, the HECKMAN
procedure does not produce estimates with the lowest bias
for all estimates.

on the contrary, the estimates of the HECKGLS procedure
have the smallest total mean square error in the second

structural equation. But not all parameter estimates of the
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TABLE 3.4
Bias, standard errors and mean square errors of the
parameter estimates obtained through Monte carlo
experiments.
First structural equation
(PUBUN)
HECKMAN HECKGLS AMEMIYA RLS
Yg 8.6067 18.4111 -4.,2458 -29.0868
(44.2635) (820.7) (172.200) (240.600)
2033, 30 6.7E05 3.0E04 5.9E04
ONE 9.6505 26.2756 -8,6350 -55.8016
(58.3161) (1147.3) (233.500) (335.200)
3493.90 1.3E06 5.5E04 1.2EG5
GOVWAGE 0.3897 0.9546 0.3987 5.1378
(2.8662) (21.7914) (5.8266) (7.2360)
8.3669 475.800 34.1078 78.7570
PRIVUN 0.0135 -0.0805 0.0079 0.1589
(0.1333) (2.1326) (0.2742) (0.3803)
0.0179 4,5544 0.0753 0.1698
PROPLAW -0.6291 -2.0752 -1.1672 -7.8958
(4.0087) (51.1505) (9.4199) (15.3988)
16.4654 2620.70 90,0973 299.50
EAG 0.0505 -0.0456 0.0443 0.4532
(0.2666) (1.8826) (0.5960) (0.8348)
0.0736 3.5462 0.3572 0.9023
Sou 0.2996 ~-0.9121 0.4220 3.3952
(2.7454) (16.9835) (8.1891) (6.7119)
7.6268 289.300 67.2400 55.9075
SENT -20.7786 -47.5530 16.3105 93.1687
(116.700) (2394.7) (469.900) (667.600)
1.4E04 5.7E06 2.2E05 4,5E05
Total MSE 2.67E5 7.73E6 3.06E5 6.29E5

The values in parentheses are the standard errors and

the values in bold are the mean square errors.
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TABLE 3.4 (continue)

Bias, standard errors and mean square errors of the
parameter estimates obtained through Monte Carlo
experiments.

Second structural equation
(SENT)
HECKMAN HECKGLS AMEMIYA RLS
PUBUN 0.0959 -0.0323 0.0347 ~0.0487
(2.9997) (0.0975) (0.0964) (0.7017)
9.0071 0.0106 0.0105 0.4547
ONE -18.9980 -4.5225 -4,0352 -4.0872
(490.600) (14.6193) (17.6756) (36.5004)
2,4E05 234.200 328.700 1348.700
GOVWAGE -0.1524 -0.4608 -0.4148 -0.7327
(2.5906) (2.9405) (0.8832) (11.2709)
6.7345 8.8592 0.9520 127.6
PRIVUN -0.0285 0.0123 0.0129 0.0171
(1.0295) (0.0576) (0.0655) (0.3287)
1.0607 0.0035 0.0080 1.9498
CAl 0.0683 0.0429 0.0360 0.0742
(1.8425) (0.2286) (0.0817) (1.3944)
3.3996 0.0541 0.0045 0.1083
COPEC -0.0360 -0.0028 -0.0033 0.0065
(0.9631) (0.0183) (0.0114) (0.1540)
0.9288 3.4E-4 1.4E-4 0.0238
LOGMPRTY 3.3890 1.0543 0.9475 1.0939
(86.2970) (3.3222) (3.9191) (12.2268)
7458.7 12.1483 16.2567 150.70
NWLF -0.0197 -0.0218 -0.0183 -0.0317
(0.5178) (0.0779) (0.0501) (0.5316)
0.2685 0.0065 0.0028 0.2836
SENT 6.3336 3.5574 3.6268 4.4287
(136.700) (10.0609) (6.5986) (44.1104)
1.9E04 113.900 56.6960 1965.3
Total MSE 1192.4 369.1825 402.6306 3596.1602
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HECKGLS procedure have the lowest mean square error; some of
the parameters estimates obtained from the AMEMIYA procedure
have lower mean sSquare errors than those of the HECKGLS
procedure . The AMEMIYA and HECKGLS procedures are both
outstanding techniques to be used in estimating the second
structural equation compared to the traditional HECKMAN
procedure. 1

To sum up, one must be careful in choosing the
appropriate technique for the problem at hand since there is
no clear-cut rule. The rule of thumb is that the traditional
HECKMAN procedure ought to be used when the attention is on
the first structural equation but the AMEMIYA or HECKGLS
procedure ought to be used when the attention is on the
second structural equation. Therefore the researcher has to
weigh the importance of the first structural equation
against the second structural equation. Nevertheless, the
AMEMIYA procedure is an excellent alternative to the HECKMAN
procedure since its total mean square error in the second
structural equation 1is roughly 0.003 times of the mean
square error of the HECKMAN procedure. The total mean square
error of the AMEMIYA procedure 1in the first structural
equation is 15 times that of the HECKMAN procedure,

If we add up the total mean square errors of the first
and second structural equation, the HECKMAN procedure has
the lowest overall mean square error. Nevertheless, using
the overall mean sqguare error to evaluate the performances

of the estimation technique is misleading for the mean
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square errors of the first structural equation are
overwhelmingly larger than those of the second structural
equation simply due the difference in the absolute values of
the estimates. Consequently, the technique that best perform
in estimating the first structural equation is likely to be
chosen regardless of its performance in the second
structural equation. Next we study the distributions of the
estimates from each of the estimation techniques to give us
a more thorough understanding in the characteristics of the
estimators. We find the descriptive statistics for the four
key parameters, Voo T 61 and 62 and present them in Tables
3.5 through 3.8 together with the distribution plots.

For the parameters () and 61, only the estimates
obtained from the HECKMAN procedure show well formed
distributions. The frequency distribution plots of the
estimates of v, and 61 obtained from the HECKGLS, AMEMIYA
and RLS procedures are sketchy at the very least and
are scattered over tremendous ranges.

The frequency distribution plots of the estimates of v,
and 82 obtained from the HECKGLS and AMEMIYA procedures more
closely resemble one another than suggested by the
descriptive statistics. However, the peak of their frequency
distribution plots are not concentrated around the actual
parameter values unlike those of the HECKMAN procedure. The
disadvantage of the estimates obtained from the HECKMAN
procedure are their very large variation. Therefore, there

is evidence of trade-off between biasness and variability.
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TABLE 3.5
The description of the distribution of th
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e estimates of

71 ==2.3830
HECKMAN HECKGLS AMEMIYA RLS
mean 6.2237 16.0281 -6.6288 -31.4689
std 44,2635 820.7 172.2 240.6
skewness -1.1725 -0.3302 -4.6104 -7.6885
kurtosis 59.0450 131.7 62.1709 125.0
max 558.9 12673 873.6 1288.5
min -553.0 -~12304 -2348.7 -4359.0
median 4.5604 2.9103 ~-0.7752 -12.6582
FIGURE 3.1
The frequency distribution of ¥,
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The description of the distribution of the estimates of
the parameter 51.

81 = 13.3007
HECKMAN HECKGLS AMEMIYA RLS
mean -7.4779 -34.2523 29.6112 106.5
std 116.7 2394.7 469.9 667.6
skewness 1.0686 1.8480 4.3409 8.0464
kurtosis 56.0987 l144.9 55.5316 136.7
max 1414 39380 6469.5 12526
min -1427 -35394 -2377 -3249.5
median -2.6165 -2.8487 13.2910 57.7578
FIGURE 3.2
The frequency distribution of S,
-
N
oL
N
©1
L]
(= 4
fat
®
m =3
r
* —
o 1 - | 1 1. i | -
-200 -150 -100 =50 0 50 100 160
MIDPOINT
..... RLS
HECKMAN
- - - HECKGLS

N AMEMIYA



57

TABLE 3.7
The description of the distribution of the estimates of

the parameter v,

¥, = 0.0294

HECKMAN HECKGLS AMEMIYA RLS
mean 0.1253 -0.0030 -0.0053 -0.0194
std 2.9997 0.0975 0.0964 0.7017
skewness 30.6855 -17.3648 -12.5335 -25.0754
kurtosis 963.0 420.7 278.2 744.3
max 93.9723 0.4298 0.9238 4.1869
min - =5.1406 -2.4652 -2.1557 -20.5875
median 0.0319 0.0003 0.0001 -0.0022
FIGURE 3.3
The frequency distribution of 7,
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TABLE 3.8

The description of the distribution of the estimates of

the parameter 62.

§_==-0.3904
2

HECKMAN HECKGLS AMEMIYA
mean 5.9432 3.1670 3.2365
std 136.7 10.0609 6.5986
skewness 31.0881 25.0969 19.0264
kurtosis 3980.0 723.5 475.7
max 4302 295.9 174.7
min ~-109.4 -23.1698 -36.3709
median 1.0253 2.7668 2.8138
FIGURE 3.4
The frequency distribution of 3§,
Q
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4.0383
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3.3.3 THE CHARACTERISTICS OF THE MONTE CARLO SAMPLES USED,

Recall that not all Monte Carlo samples generated can
be used in the experiments for some of the samples lead to
negative estimated asymptotic variances of the parameter
estimates. Each estimation technique needs different groups
of Monte Carlo samples to come up with a thousand sets of
parameter estimates for which all have positive estimated
asymptotic variances. Therefore, the Monte Carlo samples
used for each estimation technique contains useful
information regarding their characteristics.

Recall that the parameters o, and of are estimated
prior to the estimation of the structural parameters, as a
consequence, the estimates of o, and of are not dependent
on the estimation techniques wused in estimating the
structural parameters. We get the same estimates of o, and
of if the same Monte Carlo samples are used regardless of
the estimation techniques used in estimating the structural
parameters. Accordingly, the information concerning the
characteristics of the generated Monte Carlo samples that
yield positive estimates of the asymptotic variances for all
structural parameters for each estimation techniques are
captured by the estimates of o, and of.

In Tables 3.9 and 3.10, the descriptive statistics of
the estimates of o, and of obtained through performing a
Monte Carlo experiment for each of the estimation techniques

are presented along with the frequency distribution plots.
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TABLE 3.9
The description of the distribution of the estimates of

the parameter PP

am = ~0.6636
HECKMAN HECKGLS AMEMIYA RLS
mean 0.3230 -3.9887 -3.1900 -2.5698
std 23.3971 23.0758 21.4482 18.7341
skewness 0.248%6 0.7524 2.0927 -0.3606
kurtosis 9.4950 12.1878 27.1614 10.6162
max 177.4 177.4 230.3 115.1
min -130.9 ~-133.2 -89.0670 -113.3
median 0.9879 -3.4266 -2.2313 -1.1599
mnse 6.9436 5.8408 5.4693 7.4507
F1GURE 3.5
The frequency distribution of 0.,
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the parameter af.

mean

std
skewness
kurtosis
max

min
median
mse

24 28 32 38

20

XFREQ

18

12

HECKMAN
370.8
984.0
10.7419
175.1
19810
28.97
123.8
186.5

TABLE 3.10
The description of the distribution of the estimates of

of =51.5406
HECKGLS AMEMIYA RLS
373.9 328.9 259.1
1080.1 1422.8 669.6
9.4935 15.8972 6.5635
133.6 325.1 58.47
19810 33119 8251.3
28.97 31.01 31.80
106.1 '73.2940 60.1892
76.7011 169.7 1466.9

FIGURE 3.6

The frequency distribution of af

61

HECKMAN
- - - HECKGLS
== AMEMIYA
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The estimates of c, and af obtained via the Monte Carlo
samples used in the experiment of the HECKMAN procedure are
very dispersed which suggests that the HECKMAN procedure is
able to handle a wide range of fluctuation in the data. The
HECKGLS procedure, however, appears to perform in the same
range data fluctuation as that of the HECKMAN procedure.

The procedures that use the generalized least squares
approach show that they are sensitive to the fluctuation in
the data set. All the generated Monte Carlo samples that
produce positive estimates of the asymptotic variances of
the procedures employing the generalized 1least squares
approach give estimates of o, and of that are concentrated
around the actual values. Furthermore, the RLS procedure
which imposes an additional restriction in the estimation
process yield estimates of o and of with great precision.
The evidence indicates that the Monte Carlb samples which
produce the estimates of o, and Uf which do not agree with
the actual values are very 1likely to be rejected by the
estimation techniques employing the generalized 1least

squares approach.

3.3.4 THE ASYMPTOTIC STANDARD ERRORS.

In this Section, we address the question concerning the
ability of the standard errors obtained from the Monte Carlo
experiments in approximating the actual asymptotic standard

errors. We mentioned in the introduction that the smnall
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sample variability may not be the same as the theoretical
asymptotic variability. We approximate the small sample
variability through the standard deviations of the parameter
estimates obtained through the Monte Carlo experiments. Then
we calculate true asymptotic standard errors by substituting
the actual parameter values into the asymptotic covariance
matrix equations. The means of calculating the actual
asymptotic standard errors fcor the HECKMAN, HECKGLS, AMEMIYA
and RLS procedures are described below.

1.HECKMAN procedure.

Recall that we estimate the parameters of the first

structural equation by the relationship

SF — 7 -1 ] ‘
B, = (2]2)) 2]y, . (3.15)

Using the relationship in equation (2.5)

* _ Z #* + ¢
Y, = 1@1 v, :

Consequently, we get
BT = (z'z)'2/ (28 + w
B, = (2/2) , (2,8, w,)

-1

’ -1 ’ * ’ -1, *
(zlzl) (lel)gl + (lel) ZIYI

=8 + (2:2) ‘2w 3
=8, (212,) Zw, - (3.16)
Next, we want to determine the limiting distribution of the

A
sequence VT-(@I - @:) as T-w. We have

A - _ . , -1, #
VT- (B8, - B,) = VT-(Z]Z)) ZW,

— ’ "l ¥
= (2]2,/T) 2w /YT . (3.17)
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A
The asymptotic variance-covariance matrix of VT(@I - B) is

’ 1, ’ -1
pliml:zlz1] 2 Cov(wI) Z [2121]

T VT vT T
Now
lim = (2'2)
p T 11
= plim i X1 X F -
T 27 !
A A A A
I’ X’ XII Ix'xX I x’
2 2 2 1 2
= plim Z|x’ XN ' ‘F 3.18
= plim T xlx 5 XIX1 X1 . (3.18)
AA A A A
FXTI F'X F'F
2 1

We substitute the following expression for the expression in
equation as an approximation (3.18)
I’ X’ X1I IXxXxX Imx
2 2 2 1 2

X XIT X'X X'F
1772 171 1

Hi=

FXTI2 F’X1 F'F
Similarly, we use (1/VT)[XHé, X1 , F] as the proxy for
plim(Z;/\/T). With the expression for Cov(w:) described in
Equation(2.19), we are now able to calculate the asymptotic
standard errors for the parameters of the first structural
equation by substituting in the actual parameter values. The
calculated true asymptotic covariance matrix of the first

structural equation is expressed as
Cov (@) = {(z'z )“zl}-cov(w‘) .{(z'z )'12'}'
1 171 1 1 1™ 1
with the term [XHZ, x1 , F ] replacing the matrix Z where Fk=
F(x;T)) and F is the cumulative distribution function of the

normal distribution. The standard errors for the second

structural equation are also acquired in the same manner.
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2 .HECKGLS procedure.
Recalling Equation(2.35), the estimates for the
parameters of the first structural equation are obtained by

the relationship
-1
ph — ’ ’ ’ o -1 ’ ’ v ’ ¢ it T
B, = [(x Z,)’ (X’ Cov(w )X) ' (X 21)] [(x Z)’ (X' Cov (W )X) X )_/1] .

= 8] + s [(x'2,) (X Cov(u) ) (x'w)) ] (3.19)

where S = (X’Zl)’(X’Cov(w:)X) Tx'z).
Similar to the case of HECKMAN procedure, we want to

find the limiting distribution for the sequence VT(._- 8,)

as T-w. We have
\/T(é:G— @:) = v"[(x'zl/wr)' (X'Cov(wI)X)"x'w:]
where
vV = [(X'Zl/\/T)’ (x'ch(w:)X)‘l(x'zl/\/T)]
The asymptotic variance-covariance matrix of VT(é; - @I) is
described as

plim v‘l{x'zz/‘/fr)' (x'Cov(w:)X)"x"w:}-{ }'v'JL

= plim v~ . (3.20)
Again, the term plim (X’ZI/VT) is substituted by

xl
X %, ]

The expression for the asymptotic covariance of HECKGLS

procedure is described in Equation (2.36) as

Aw - - -1
Cov (B, ) = {(X’Zl)’(X'Cov(wl)X) 1(x'zl)} .
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As we did for the HECKMAN procedure, we use the true
parameter values 1in the expression for Cov(w:) in Equation
(3.20) and the term [XHZ, 2 S F] replacing the matrix tho
obtain the true asymptotic standard errors for the
parameters of the first structural equation. We find the
asymptotic standard errors for the second structural
equation in the same manner.

3. AMEMIYA procedure.

The instrumental variable/GLS or AMEMIYA procedure
estimates the parameters of the first structural equation by

the relationship
-1
=* — 1%y ’ -1 1 m° 1%y s ’ -1 ¢
B, = [(x Z.)’ (X' Cov (W, )X) (x,zl)] [(x Z))’ (X' Cov(w)X) (X gl)]
= @I + w'*[(x'z:)'(x'cOv(wl)X)‘l(x'yl)] (3.21)
where W = [(x'z;’)' (X'Cov(wl)X)'l(X’Z:)] .
Now we have
»/'1*({_9‘,'1‘G - g:) = v'l[(x'z:/wr)' (X’Cov(wl)X)"l(X’Z:/\/’I‘)]
where V = [(x'z:/\/'r)' (X’Cov(wl)X)-I(X’Z:/x/T)] .
We write the asymptotic variance-covariance matrix of
VT(B, - B,) as
plimv™ (X'Z;/VT)’ (x'Cov(wl)X)‘lx'ylyl'X(X'Cov(wl)X) -1 (x'z:/\/T)v‘l
. -1
= plimV ".
The matrix Z: is described as

zZ° = [xﬁ , d]
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Therefore,

1v° — l ’ A ’ ’
X Zl/w/T = T2 [X Xm, XX , X d]
We use the following expression instead of plim X’Z:/VT as

an approximate

0 if x'II <0

t 2

where dt = {

1 if x'II =0

t 2
By substituting in the actual parameter values in the
expression for Cov(wl) in Equation (2.48) together with the
approximate of plimX’Zf/VT, we obtain the asymptotic
variance-~covariance matrix of the estimates for the

parameters of the first structural equation which is

expressed as

‘ -1
COV(EIG) = [(X’Z:)’(X’Cov(wl)X)_l(X’Z:)]

The asymptotic covariance matrix for the estimates of the
parameters of the second structural equation are acquired in
similar manner.

4. RLS procedure.

The restricted least squares procedure estimates the
parameters of both structural equations and imposes the
restriction that the estimates of 3, in both structural

equations are the same, simultaneously (Section 2.4.4).
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The covariance matrix of the restricted least squares
estimator is expressed as

Cov(B)) = cov(B') - cov(B')H’ (HCov (B")H’) 'HCov(B")  (3.22)

where
a* -1.1-1
Cov(B ) = [Q'(Cov(r)) Q] (3.23)
and
x'z: 0
Q = ’
0 X'Z
X’Cov(wl)x X’Cov(wl,wz)x
Cov(r) = .
X’Cov(wz)x
We have
A - -1 _
B = [Q'(Covm) 1Q] [Q'(Covm) 1g]
where
»*
q=0Q +r
*
XI¥1 @1 XIYI
= Q + .
X'y, 8, X',

Following the same procedure as other estimation procedures,
we can show that

vT(B" - B") = [Q’/\/T(Cov(r))'lQ/\/T]_l [Q'/\/T(Cov(r))“a__»]
and the asymptotic variance-covariance matrix for VT(Q* - B)
is described as

-1
plim [Q’/\/T (Cov (r) )‘IQ/\/T] .
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As for the previous procedures, we approximate for the term
plim Q/VT in which we use [XIIZ, X, d] and [XIIZ, ~X_ d] to
replace Z: and Z; in the calculation of the true asymptotic

covariance matrix, respectively. Note that
a - {0 if x;H?<O

1 otherwise
It is simple to show that the asymptotic covarince matrix of
ﬁ; is the same as the expression in Equation (3.22). We
calculate the true covariance matrices of the first and
second structural equations all together by substituting the
true parameter values into Equation (3.22).

In Table 3.11, we present the actual asymptotic
standard errors, the standard errors obtained through the
Monte Carlo experiments and their percentage differences.
Let A denote actual asymptotic standard error of a parameter
estimate and s denote standard error obtained through Monte
Carlo experiments, the percentage difference between A and S
is defined as [(A-S)/S]1x100.

The standard errors of the HECKMAN procedure obtained
via the Monte Carlo experiments underestimate the asymptotic
standard errors for all parameters in the first structural
equation except for the parameter associated with the
variable PROPLAW; 1in contrast, the asymptotic standard
errors of the second structural equation are overestimated
except for the parameter associated with the wvariable
GOVWAGE. The standard errors obtained through the Monte

Carlo experiments of the HECKGLS procedure underestimate the

asymptotic standard errors of the estimates of the
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The calculated actual asymptotic standard errors.

First structural equation

(PUBUN)
HECKMAN HECKGLS AMEMIYA RLS
vx 160.9000 1613.30 70.5308 28.3506
(44.2635) (820.7) (172.200) (240.600)
-72.9 -49.1 144 749
ONE 211.3000 2118.70 28.6507 12.0963
(58.3161) (1147.3) (233.500) (335.200)
-72.4 -45,9 714 2671
GOVWAGE 2.8781 3.4568 5.4986 2.4331
(2.8662) (21.7914) (5.8266) (7.2360)
-0.4 530. 4 6.0 197
PRIVUN 0.1361 0.1436 0.2572 0.1134
(0.1333) (2.1326) (0.2742) (0.3803)
-2.1 1385 6.6 235
PROPLAW 1.7385 13.7361 11.1073 4.9587
(4.0087) (51.1505) (9.4199) (15.3988)
130.6 272.0 15.2 210
EAG 0.2700 0.4513 0.6941 0.3129
(0.2666) (1.8826) (0.5960) (0.8348)
-1.3 317.0 -14.1 167
sou 2.8105 9.5070 9.0700 3.9415
(2.7454) (16.9835) (8.1891) (6.7119)
-2.3 78.6 -9.7 70.3
SENT 422.2000 4236.30 60.1810 24.6451
(116.700) (2394.7) (469.900) (667.600)
-72.3 -43.5 680.0 2609

The values 1in parentheses are the standard errors
obtained from the Monte Carlo experiments and the values
typed in bold are the percentage difference between the
estimated standard errors and the true asymptotic values.
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The calculated actual asymptotic standard errors.

PUBUN

ONE

GOVWAGE

PRIVUN

CAl

COPEC

LOGMPRTY

NWLF

SENT

Second structural equation

HECKMAN
0.2340
(2.9997)
1811

41.8935
(490.600)
1071

2.8328
(2.5906)
~8.6

0.1226
(1.0295)
739.7

0.3019
(1.8425)
510, 3

0.0312
(0.9631)
2986

9.9664
(86.2970)
765. 9

0.1835
(0.5178)
182.2

23.8048
(136.700)
474.3

(SENT)
HECKGLS
2.5017
(0.0975)
-96.1

295.0
(14.6193)
-95,0

31.8027
(2.9405)
-30.8

0.8912
(0.0576)
-93.5

3.0348
(0.2286)
-92.5

0.2797
(0.0183)
-93.5

71.4107
(3.3222)
-95.4

1.5171
(0.0779)
-94.9

253.80
(10.0609)
-96.0

AMEMIYA

0.6506
(0.0964)

-85.2

61.2016
(17.6756)
-71.1

8.4539
(0.8832)
-89,7

0.2302
(0.0655)
-71.6

0.6995
(0.0817)
-88.3

0.0582
(0.0114)
-80.4

20.0309
(3.9191)
-80. 4

0.3364
(0.0501)
-85.1

23.4299
(6.5986)
-71.8

RLS
0.0325
(0.7017)
2059

4.5566
(36.5004)
701

0.4373
(11.2709)
2477

0.0166
(0.3287)
1880

0.0307
(1.3944)
4442

0.0034
(0.1540)
4429

1.2070
(12.2268)
912.9

0.0193
(0.5316)
175. 4

1.1321
(44.1104)
3796
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parameters 7 , 61 and the intercept term in the first
structural equation while they underestimate all of the
asymptotic standard errors in the second structural
equation. The standard errors obtained through the Monte
Carlo experiments for the AMEMIYA procedure overestimate the
asymptotic standard errors of parameters associated with the
variables EAG and SOU while wunderestimate asymptotic
standard errors of the others parameters in the first
structural equation. Similar to the case for the HECKGLS
procedure, the standard errors obtained via the Monte Carlo
experiments for the second structural equation underestimate
the asymptotic standard errors of the second structural
equation. Finally, the standard errors obﬁained fhrough the
Monte Carlo experiments for the RLS procedure overestimate
the asymptotic standard errors for all parameters in both
structural equations.

Several remarks can be made based on Table 3.11. First,
the standard errors obtained from the Monte Carlo
experiments of the HECKMAN procedure give the best estimates
of the asymptotic standard errors in the first structural
equation while those of the AMEMIYA procedure give the best
estimates of the asymptotic standard errors in the second
structural equation. Second, by using the generalized least
squares approach with the HECKMAN procedure, we increase the
asymptotic standard errors in both of the structural
equations. Third, the asymptotic standard errors from the

AMEMIYA ©procedure are less than those of the HECKGLS
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procedure for most of the parameter estimates in both
structural equations. Lastly, the RLS procedure yields the
smallest asymptotic standard errors for the estimates in the
second structural equation even though this is not reflected
via the Monte Carlo experiments.

From Table 3.11, the Monte Carlo experiments show that
the small sample properties of the estimation techniques,
namely the HECKMAN, HECKGLS, AMEMIYA and RLS procedure, are
quite dissimilar to their asymptotic theoretical
counterparts. A plausible explanation is the fact that not
all Monte Carlo samples can be used in the experiments which
may lead to the failure of capturing all aspects of the

characteristics of each estimation technique.

3.3.5 AN ALTERNATIVE ESTIMATION TECHNIQUE OF THE COVARIANCE
MATRIX,
Recall that we estimate the parameter o, by applying
least squares to Equation (3.2) which is expressed as
A Ag A
E[erlxrf_i] = X +38d+ alz[hc_i + A (1 - g)] + v

where

A

N f(x;gz)/F(x;UZ) and

-

A
t

A F(x/IL) /F(~x(1L) .

A A
We calculate the values of A, and A: by substituting in the
estimate of Uz obtained from the probit estimation process,
Equation (2.3). An argument can be made that the estimate of

o, obtained this way may not be effcient since we do not
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utilize the estimated structural parameters. In this
section, we introduce an alternative approach to the
traditional practice of estimating the components of the
covariance matrix and use the Monte Carlo experiments to
evaluate its performance.

Referring to Section 3.3.1, we show how to calculate
the reduced form parameters given the structural parameters.
Consequently, by using the estimated structural parameters
we can derive the reduced form parameters which can be used
in the estimation of the components of the covariance
matrix. The benefit of this approach is that additional
information <concerning the structural parameters are

permitted into the estimation process. Consider the equation
A Aa A
E[gl,lx,g] = XO + 61g + a}z[xg + A (1 - g)] + v,
Let denote the derived reduced form parameters as

o = [I—Im’ 1:Izn

] .

Furthermore, let 31 denote the estimate of 3, - Substituting

A A

61 and Uz into Equation (3.2), we get

E[yllx,c_l] = X0, + X(M-0,) +8d+ (5 -39)d
+ olz[ig + %1 - a) ] + v,

= xfr + Slc_l + olz[ig + i‘(l - c_i)]

-1D
1]'

By rearranging the known values to the left hand side we get

<>

ya +

+ [X(Ul - g&u) + (61 - 51 =

A ~ A As
E[zllx’g] - XI;IID- 81(5-1 = 012[7‘9 + A (1 = C_i)] + y (3.24)
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where

1< >

7= XM - T) + (5 =-8)d +

A
A

f(?‘lr-fan) /F (x;I—rzn) and

Aa

A
t

A A A
_AtF(xggzn)/F(-x;gzn) *

The alternative estimation technique of the parameter
o, is the method that applies least sgqaures to Equation
(3.24). let ﬁ be the vector of residuals obtained from the
application of least squares to Equation (3.24). We estimate

the parameter Uf from the relationship

=i

T
n2 r2 "2 _1 -
ot = tzlnt + crlz[l T, (4,9, + (1 dt)st] .

We estimate q, and s, by

A _ - ,A A - AZ

q, = 1+ xtgzo)kt Ao
and

A _ _ IA An Awp

s, = 1+ (-x(IL)A - A~
respectively.

In Table 3.12, we compare the estimates of standard
errors, and the estimates of the parameters o, and df
obtained from the traditional approach to those obtained
from the derived reduced form parameters approach using the
original data. Both techniques give nearly identical
estimates for the parameter df and slightly different
estimates for the parameter o, The standard errors

obtained from the two estimation techniques are quite

similar except for the variable PROPLAW, as a result, we
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TABLE 3.12
The standard errors of the parameter estimates and the

estimates of the components of the covaraince matrix.

Parameter estimates
Covariance matrix
traditional derived reduced
form parameters

Gm -5.0689 =-3.9177
o 51.0689 51.7824
Standard errors
First structural equation
traditional derived reduced
form parameters
y? 4.1091 4.0618
ONE 7.8998 8.0240
GOVWAGE 2.0541 2.1934
PRIVUN 0.0974 0.1027
PROPLAW 2.6561 0.8909
EAG 0.1975 0.2133
Sou 2.1308 2.2343
SENT 11.5765 8.9890
Second structural equation
PUBUN 0.1561 0.1640
ONE 47.6064 46.2756
GOVWAGE 1.2822 1.3283
PRIVUN 0.1643 0.1644
CAl 0.2096 0.2255
COPEC 0.0269 0.0284
LOGMPRTY 12.2396 12.1893
NWLF 0.1986 0.2037
SENT 2.1972 1.8327
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find no major changes in level of statistical significance
of the parameter estimates.

In Table 3.13, we present the descriptive statistics
of the estimated values of o, and crf obtained from the
Monte Carlo experiments via the traditional approcach and the
derived reduced form parameters approach, both approaches
are applied to the traditional HECKMAN procedure. Therefore,
the estimates of o, and of obtained from the Monte Carlo
experiment via the traditional approach are exactly
identical to those obtained in the study of small sample
performances of the HECKMAN procedure.

Once again, in the process of performing Monte Carlo
experiment on the derived reduced form parameters approach,
when we find the Monte Carlo sample that has negative
estimates of the asymptotic variances, we disregard that
particular sample and generate its replacement. We repeat
this process until we get a thousand estimates of o, and
of. However, we discovered that some Monte Carlo samples
cause the right hand side of Equation (3.24) to become zero,
hence rendering least squares inapplicable. We also delete
such samples from the Monte Carlo experiment. All together,
we have to generate 1498 Monte Carlo samples in the
experiment. Note that the number of Monte Carlo samples
generated is not the same as that of the traditional
approach which is equal to 1646. Thus, the two approaches of

estimating the covariance matrix are able to use different

sets of samples.
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TABLE 3.13
The descriptive statistics of the estimates of 0., and
of obtained from the Monte Carlo experiments of the
traditional and the derived reduced form parameters approach.

o, = -0.6336
12

traditional

derived reduced

form parameters

mean 0.3230 -74.7188
std 23.3971 2487
skewness 0.2486 -31.5951
kurtosis 9.4950 1001
max 177.4 305.2
min -130.9 -78600
median 0.9876 4.5295
nse 547.9 6.18E6
51.5406
traditional derived reduced
form parameters

mean 370.8 2.25E4
std 981.0 2.27E5
skewness 10.7419 18.5008
kurtosis 175.1 380.3
max 19810 5.17E6
min 28,97 31.7216
median 186.5 282.7
mse 1.06E6 5.20E10
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From Table 3.14, we observe that the estimates obtained
from using the derived reduced form parameters approach are
by no means more accurate than those obtained from those
obtained from the traditional approach. However, by using
the covariance estimates obtained from the derived reduced
form parameters less Monte Carlo samples are rejected which
may lead to better estimates of the structural parameters.

In Table 3.15, we present the structural parameter
estimates and their standard errors obtained from applying
the HECKMAN procedure and its alternative on the original
data using the derived reduced form parameters approach in
estimating o, and of. The structural parameters used in
deriving the reduced form parameter are from the HECKMAN
procedure. The results in Table 3.15 are quite similar to
those in Table 3.1 where the components of the covariance
matrix are obtained via the traditional approach.

The Monte Carlo experiments using the estimates of o,
and af obtained wvia the derived reduced form parameter
approach in the process are also performed on the HECKGLS,
AMEMIYA and RLS procedure; once more, the derived reduced
form parameters are estimated by using the structural
parameter estimates obtained through the HECKMAN procedure.
We discover that a great deal of generated Monte Carlo
samples have to Dbe omitted since they yield negative
estimates of the parameter variances. Moreover, the mean

square errors of all parameter estimates are increased by
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TABLE 3.14

Bias, standard errors and mean square errors of the
parameter estimates obtained through Monte Carlo
experiments.

First structural equation

(PUBUN)
traditional derived reduced
form parameters
Y; 8.6067 4.3714
‘ (44.2635) (27.8230)
2033.30 793.20
ONE 9.6505 4.1659
(58.3161) (37.7928)
3493.30 1445.60
GOVWAGE 0.3897 0.1980
(2.8662) (3.0157)
8.3669 9.1335
PRIVUN 0.0135 0.0067
(0.1333) (0.1393)
0.0179 0.0195
PROPLAW -0.6291 -0.4164
(4.0087) (4.2892)
16,4654 18.5704
EAG 0.0505 0.0372
(0.2666) (0.3071)
0.0736 0.0957
sou 0.2996 0.2496
(2.7454) (3.0022)
7.6268 9.0756
SENT -20.7786 -9.1241
(116.700) (75.5782)
1.4E04 5795. 4
Total 1.96E4 8071.1

The values in parentheses are

the standard errors and
the bold values are the mean square errors.
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TABLE 3.14(continue)

Bias, standard errors and mean square errors of the
parameter estimates obtained through Monte Carlo
experiments.

Second structural equation
(SENT)
traditional derived reduced

form parameters

PUBUN 0.0959 0.0032
(2.9997) (0.9124)
9,0071 0.8325
ONE -18.9980 -3.3335
(490.600) (55.8953)
2. 4E05 3135. 40
GOVWAGE -0.1524 -0.3825
(2.5906) (4.7641)
6.7345 22.8430
PRIVUN -0.0285 -0.0069
(1.0295) (0.4198)
1.0607 0.1763
cal 0.0683 0.0126
(1.8425) (0.5047)
3,3996 0.2549
COPEC ~0.0360 -0.0048
(0.9631) (0.1332)
0.9288 0.0178
LOGMPRTY 3.3890 0.6892
(86.2970) (12.6449)

7458.7 160. 4
NWLF -0.0197 -0.0047
(0.5178) (0.3327)
0.2685 0.1107
SENT 6.3336 2.4245
(136.700) (43.0134)

1.9E04 1856

Total 2.64E4 5176
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TABLE 3.15
The coefficient estimates of the selected estimation
process.
First structural equation
(PUBUN)
HECKMAN HECKGLS AMEMIYA RLS

Yg -2.3830 6.2804 6.9705 6.1254
(7,) (4.0618) (7.7579) (5.6104) (5.5335)
ONE 39.2069 54.3126 57.2841 49.7700
(8,,) (8.0240) (14.5804) (10.8814) (10.1303)
GOVWAGE -11.4664 -11.4714 -11.9181 -10.8677
(B,,) (2.1934) (2.3614) (1.9606) (1.9182)
PRIVUN 0.2170 0.3402 0.3928 0.5126
(B,,) (0.1027) (0.1642) (0.1278) (0.1194)
PROPLAW 14.9908 22.3594 22.8074 24.5160
(8,,) (0.8909) (6.6273) (5.2942) (5.2528)
EAG -0.8328 -0.7388 -0.7129 -0.3478
(B,) (0.2133) (0.2643) (0.1800) (0.1186)
SOU -7.0743 + =-8.2288 -8.1551 ~-5.8438
(B,,) (2.2343) (2.5701) (2.0843) (1.8550)
SENT 13.3007 -28.1923 -36.1480 -34.8884
(8,) (8.9890) (34.5827) (25.9471) (25.8097)
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TABLE 3.15 (continue)
The coefficient estimates of the selected estimation

process.
Second structural equation
(SENT)
HECKMAN HECKGLS AMEMIYA RLS

PUBUN 0.2348 0.2751 0.0259 0.0609
(7,) (0.1640) (0.0132) (0.0129) (0.0205)
ONE 16.8075 1.7121 1.7064 6.1455
(B,,) (46.2756) (2.7913) (2.8438) (3.6117)
GOVWAGE 3.0002 0.4508 0.4523 0.8799
(B,,) (1.3283) (0.1853) (0.1775) (0.3138)
PRIVUN -0.0813 -0.0101 -0.0123 ~0.0434
(8,,) (0.1644) (0.0109) (0.0102) (0.0132)
CAl -0.2878 -0.0578 -0.0568 -0.0958
(B,,) (0.2255) (0.0207) (0.0199) (0.0243)
COPEC 0.0260 0.0024 0.0028 0.0172
(8,,) (0.0284) (0.0034) (0.0031) (0.0038)
LOGMPRTY -6.5865 -1.1308 -1.1060 -2.4701
(B,,) (12.1893) (0.7761) (0.7727) (0.8865)
NWLF 0.1425 0.0200 0.0165 0.0326
(8, 1o) (0.2037) (0.0139) (0.0135) (0.0072)

SENT -2.3558 3.2666 3.2955 2.1233
(3,) (1.8327) (0.3367) (0.3269) (0.7645)
-7261 -3.1230 0.7752 0.9362 2.1247

Note: The values in parentheses are the asymptotic standard

errors.
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many fold compared to those presented in Table 3.4. As a
consequence, the estimates of o, and of obtained wvia the
derived reduced form parameters approach should not be used
in the HECKGLS, AMEMIYA and RLS procedure since they
increase the variability. The reason is that the estimates
of o and of obtained via the derived reduced form
parameters approach are not very accurate in estimating the
actual values of o, and af.

It 1is possible to use the reduced form parameters
derived from the structural parameter estimates of the
HECKMAN procedure as the 1initial starting wvalues to
calculate gm and Sf in the derived reduced form parameters
approach. This can be implemented in the HECKGLS, AMEMIYA
and RLS procedure. The reduced form parameters are updated
by using the recently obtained structural parameter
estimates and then the estimates of o, and 3? are
re-calculated. We proceed with this iterative method until
certain convergency criteria are met. Possible problems of
estimating the structural parameters by this iterative
method are that there are no guaranties that convergence
exists and, even when there 1is convergence, maybe not all
estimates of the variances are positive. Furthermore, using

Monte Carlo experiment to find the small sample properties

of such estimation technique is time consuming.
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3.4 CONCLUSIONS.

1. We have introduced three alternatives estimation
techniques (HECKGLS, AMEMIYA and RLS) to the traditional
HECKMAN procedure. The alternative estimation techniques all
utilize generalized least squares methods These alternatives
yield estimation results that are quite alike. With the
implementation of the iterative routine, we have shown that
these alternatives estimation techniques have a tendency to
produce estimates that converge to the same values. However,
the results obtained are very distinctive from those of the
HECKMAN procedure.

2. We have used Monte Carlo experiments to study the
small sample properties of the HECKMAN procedure and its
alternatives. In the course of the experiments, we have
discovered that not all Monte Carlo samples generated can be
used for they do not yield positive estimates of variances.
From the Monte Carlo experiments, we have suggested the
AMEMIYA procedure as an alternative to the traditional
HECKMAN proced